This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

155317-Thumbnail Image.png
Description
Pregnancy and childbirth are both natural occurring events, but still little is known about the signaling mechanisms that induce contractions. Throughout the world, premature labor occurs in 12% of all pregnancies with 36% of infant deaths resulting from preterm related causes. Even though the cause of preterm labor

Pregnancy and childbirth are both natural occurring events, but still little is known about the signaling mechanisms that induce contractions. Throughout the world, premature labor occurs in 12% of all pregnancies with 36% of infant deaths resulting from preterm related causes. Even though the cause of preterm labor can vary, understanding alternative signaling pathways, which affect muscle contraction, could provide additional treatment options in stopping premature labor. The uterus is composed of smooth muscle, which is innervated, with a plexus of nerves that cover the muscle fibers. Smooth muscle can be stimulated or modulated by many sources such as neurotransmitters [i.e. dopamine], hormones [i.e. estrogen], peptides [i.e. oxytocin] and amines. This study focuses on the biogenic monoamine tyramine, which is produced in the tyrosine catecholamine biosynthesis pathway. Tyramine is known to be associated with peripheral vasoconstriction, increased cardiac output, increased respiration, elevated blood glucose and the release of norepinephrine. This research has found tyramine, and its specific receptor TAAR1, to be localized within mouse uterus and that this monoamine can induce uterine contractions at levels similar to oxytocin.
ContributorsObayomi, SM Bukola (Author) / Baluch, Debra P (Thesis advisor) / Deviche, Pierre (Thesis advisor) / Smith, Brian H. (Committee member) / Arizona State University (Publisher)
Created2017