This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

151709-Thumbnail Image.png
Description
Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of

Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of five AWS and five paired control sites (treatments) in the surrounding Sonoran desert from October 2011 to May 2012. I measured plant species richness, density, and percent cover in the spring of 2012. A Multi-response Permutation Procedure was used to identify differences in small mammal community abundance, biomass, and species richness by season and treatment. I used Principle Component Analysis to reduce 11 habitat characteristics to five habitat factors. I related rodent occurrence to habitat characteristics using multiple and logistic regression. A total of 370 individual mammals representing three genera and eight species of rodents were captured across 4800 trap nights. Desert pocket mouse (Chaetodipus penicillatus) was the most common species in both seasons and treatments. Whereas rodent community abundance, biomass, and richness were similar between seasons, community variables of AWS were greater than CS. Rodent diversity was similar between treatments. Desert pocket mouse abundance and biomass were twice as high at AWS when compared to controls. Biomass of white-throated woodrat (Neotoma albigula) was five times greater at AWS. Habitat characteristics were similar between treatments. Neither presence of water nor distance to water explained substantial habitat variation. Occurrence of rodent species was associated with habitat characteristics. Desert rodent communities are adapted for arid environments (i.e. Heteromyids) and are not dependent on "free water". Higher abundances of desert pocket mouse at AWS were most likely related to increased disturbance and debris and not the presence of water. The results of this study and previous studies suggest that more investigation is needed and that short term studies may not be able to detect interactions (if any) between AWS and desert small mammal communities.
ContributorsSwitalski, Aaron (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2013
151334-Thumbnail Image.png
Description
Biological diversity is threatened by increasing anthropogenic modification of natural environments and increasing demands on natural resources. Sonoran desert tortoises (Gopherus morafkai) currently have Candidate status under the Endangered Species Act (ESA) based on health and habitat threats. To ensure this animal persists in the midst of multiple threats requires

Biological diversity is threatened by increasing anthropogenic modification of natural environments and increasing demands on natural resources. Sonoran desert tortoises (Gopherus morafkai) currently have Candidate status under the Endangered Species Act (ESA) based on health and habitat threats. To ensure this animal persists in the midst of multiple threats requires an understanding of the life history and ecology of each population. I looked at one physiological and one behavioral aspect of a population of tortoises at the Sugarloaf Mountain (SL) study site in central Arizona, USA. I used 21 years of capture-recapture records to estimate growth parameters of the entire population. I investigated habitat selection of juvenile tortoises by selecting 117 locations of 11 tortoises that had been tracked by radio-telemetry one to three times weekly for two years, selecting locations from both summer active season and during winter hibernation. I compared 22 microhabitat variables of tortoise locations to random SL locations to determine habitat use and availability. Male tortoises at SL reach a greater asymptotic length than females, and males and females appear to grow at the same rate. Juvenile tortoises at the SL site use steep rocky hillsides with high proportions of sand and annual vegetation, few succulents, and enclosed shelters in summer. They use enclosed shelters on steep slopes for winter hibernation. An understanding of these features can allow managers to quantify Sonoran desert tortoise habitat needs and life history characteristics and to understand the impact of land use policies.
ContributorsBridges, Andrew (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Ulrich, Jon (Committee member) / Arizona State University (Publisher)
Created2012
152641-Thumbnail Image.png
Description
The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive

The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive immune system is further split into two main categories: humoral and cellular immunity. The humoral immune response produces antibodies against specific targets, and these antibodies can be used to learn about disease and normal states. In this document, I use antibodies to characterize the immune system in two ways: 1. I determine the Antibody Status (AbStat) from the data collected from applying sera to an array of non-natural sequence peptides, and demonstrate that this AbStat measure can distinguish between disease, normal, and aged samples as well as produce a single AbStat number for each sample; 2. I search for antigens for use in a cancer vaccine, and this search results in several candidates as well as a new hypothesis. Antibodies provide us with a powerful tool for characterizing the immune system, and this natural tool combined with emerging technologies allows us to learn more about healthy and disease states.
ContributorsWhittemore, Kurt (Author) / Sykes, Kathryn (Thesis advisor) / Johnston, Stephen A. (Committee member) / Jacobs, Bertram (Committee member) / Stafford, Phillip (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2014
153110-Thumbnail Image.png
Description
The healthcare system in this country is currently unacceptable. New technologies may contribute to reducing cost and improving outcomes. Early diagnosis and treatment represents the least risky option for addressing this issue. Such a technology needs to be inexpensive, highly sensitive, highly specific, and amenable to adoption in a clinic.

The healthcare system in this country is currently unacceptable. New technologies may contribute to reducing cost and improving outcomes. Early diagnosis and treatment represents the least risky option for addressing this issue. Such a technology needs to be inexpensive, highly sensitive, highly specific, and amenable to adoption in a clinic. This thesis explores an immunodiagnostic technology based on highly scalable, non-natural sequence peptide microarrays designed to profile the humoral immune response and address the healthcare problem. The primary aim of this thesis is to explore the ability of these arrays to map continuous (linear) epitopes. I discovered that using a technique termed subsequence analysis where epitopes could be decisively mapped to an eliciting protein with high success rate. This led to the discovery of novel linear epitopes from Plasmodium falciparum (Malaria) and Treponema palladium (Syphilis), as well as validation of previously discovered epitopes in Dengue and monoclonal antibodies. Next, I developed and tested a classification scheme based on Support Vector Machines for development of a Dengue Fever diagnostic, achieving higher sensitivity and specificity than current FDA approved techniques. The software underlying this method is available for download under the BSD license. Following this, I developed a kinetic model for immunosignatures and tested it against existing data driven by previously unexplained phenomena. This model provides a framework and informs ways to optimize the platform for maximum stability and efficiency. I also explored the role of sequence composition in explaining an immunosignature binding profile, determining a strong role for charged residues that seems to have some predictive ability for disease. Finally, I developed a database, software and indexing strategy based on Apache Lucene for searching motif patterns (regular expressions) in large biological databases. These projects as a whole have advanced knowledge of how to approach high throughput immunodiagnostics and provide an example of how technology can be fused with biology in order to affect scientific and health outcomes.
ContributorsRicher, Joshua Amos (Author) / Johnston, Stephen A. (Thesis advisor) / Woodbury, Neal (Committee member) / Stafford, Phillip (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2014
150131-Thumbnail Image.png
Description
African Swine Fever (ASF), endemic in many African countries, is now spreading to other continents. Though ASF is capable of incurring serious economic losses in affected countries, no vaccine exists to provide immunity to animals. Disease control relies largely on rapid diagnosis and the implementation of movement restrictions and strict

African Swine Fever (ASF), endemic in many African countries, is now spreading to other continents. Though ASF is capable of incurring serious economic losses in affected countries, no vaccine exists to provide immunity to animals. Disease control relies largely on rapid diagnosis and the implementation of movement restrictions and strict eradication programs. Developing a scalable, accurate and low cost diagnostic for ASF will be of great help for the current situation. CIM's 10K random peptide microarray is a new high-throughput platform that allows systematic investigations of immune responses associated with disease and shows promise as a diagnostic tool. In this study, this new technology was applied to characterize the immune responses of ASF virus (ASFV) infections and immunizations. Six sets of sera from ASFV antigen immunized pigs, 6 sera from infected pigs and 20 sera samples from unexposed pigs were tested and analyzed statistically. Results show that both ASFV antigen immunized pigs and ASFV viral infected pigs can be distinguished from unexposed pigs. Since it appears that immune responses to other viral infections are also distinguishable on this platform, it holds the potential of being useful in developing a new ASF diagnostic. The ability of this platform to identify specific ASFV antibody epitopes was also explored. A subtle motif was found to be shared among a set of peptides displaying the highest reactivity for an antigen specific antibody. However, this motif does not seem to match with any antibody epitopes predicted by a linear antibody epitope prediction.
ContributorsXiao, Liang (Author) / Sykes, Kathryn (Thesis advisor) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Arizona State University (Publisher)
Created2011
150097-Thumbnail Image.png
Description
Once considered an abundant species in the eastern United States, local populations of red-shouldered hawks, Buteo lineatus, have declined due to habitat destruction. This destruction has created suitable habitat for red-tailed hawks, Buteo jamaicensis, and therefore increased competition between these two raptor species. Since suitable habitat is the main limiting

Once considered an abundant species in the eastern United States, local populations of red-shouldered hawks, Buteo lineatus, have declined due to habitat destruction. This destruction has created suitable habitat for red-tailed hawks, Buteo jamaicensis, and therefore increased competition between these two raptor species. Since suitable habitat is the main limiting factor for raptors, a computer model was created to simulate the effect of habitat loss in central Maryland and the impact of increased competition between the more aggressive red-tailed hawk. These simulations showed urban growth contributed to over a 30% increase in red-tailed hawk habitat as red-shouldered hawk habitat decreased 62.5-70.1% without competition and 71.8-76.3% with competition. However there was no significant difference seen between the rate of available habitat decline for current and predicted development growth.
ContributorsMurillo, Crystal (Author) / Whysong, Gary (Thesis advisor) / Alford, Eddie (Committee member) / Miller, William (Committee member) / Arizona State University (Publisher)
Created2011
151016-Thumbnail Image.png
Description
Human recreation on rangelands may negatively impact wildlife populations. Among those activities, off-road vehicle (ORV) recreation carries the potential for broad ecological consequences. A study was undertaken to assess the impacts of ORV on rodents in Arizona Uplands Sonoran Desert. Between the months of February and September 2010, rodents were

Human recreation on rangelands may negatively impact wildlife populations. Among those activities, off-road vehicle (ORV) recreation carries the potential for broad ecological consequences. A study was undertaken to assess the impacts of ORV on rodents in Arizona Uplands Sonoran Desert. Between the months of February and September 2010, rodents were trapped at 6 ORV and 6 non-ORV sites in Tonto National Forest, AZ. I hypothesized that rodent abundance and species richness are negatively affected by ORV use. Rodent abundances were estimated using capture-mark-recapture methodology. Species richness was not correlated with ORV use. Although abundance of Peromyscus eremicus and Neotoma albigula declined as ORV use increased, abundance of Dipodomys merriami increased. Abundance of Chaetodipus baileyi was not correlated with ORV use. Other factors measured were percent ground cover, percent shrub cover, and species-specific shrub cover percentages. Total shrub cover, Opuntia spp., and Parkinsonia microphylla each decreased as ORV use increased. Results suggest that ORV use negatively affects rodent habitats in Arizona Uplands Sonoran Desert, leading to declining abundance in some species. Management strategies should mitigate ORV related habitat destruction to protect vulnerable populations.
ContributorsReid, John Simon (Author) / Brady, Ward (Thesis advisor) / Miller, William (Committee member) / Bateman, Heather (Committee member) / Arizona State University (Publisher)
Created2012
149833-Thumbnail Image.png
Description
ABSTRACT The elephant tree, Bursera microphylla, is at the northern limit of its range in central Arizona. This species is sensitive to frost damage thus limiting its occurrence in more northern areas of the southwest. Marginal populations of B. microphylla are found in mountain ranges of Central Arizona and are

ABSTRACT The elephant tree, Bursera microphylla, is at the northern limit of its range in central Arizona. This species is sensitive to frost damage thus limiting its occurrence in more northern areas of the southwest. Marginal populations of B. microphylla are found in mountain ranges of Central Arizona and are known to occur in the rugged mountain range system of the South Mountain Municipal Park (SMMP). Little is known of the distribution of this species within the park and details relevant to the health of both individual plants and the population such as diameter and number of trunks, height, and presence of damage have not been examined. This study was designed, in part, to test the hypothesis that favorable microhabitats at SMMP are created by particular combinations of abiotic features including aspect, slope, elevation and solar radiation. Data on abiotic factors, as well as specific individual plant locations and characteristics were obtained for 100 individuals. Temperature data was collected in vertical transects at different altitudinal levels. Some of these data were used in spatial analyses to generate a habitat suitability model using GIS software. Furthermore, collected data was analyzed using Matlab© software to identify potential trends in the variation of morphological traits. In addition, for comparative purposes similar information at one hundred computer-generated randomly chosen points throughout SMMP was obtained. The GIS spatial analyses indicated that aspect, slope, elevation, and relative solar radiance are strongly associated as major climatic components of the microhabitat of B. microphylla. Temperature data demonstrated that there are significant differences in ambient temperature among different altitudinal gradients with middle elevations being more favorable. Furthermore, analyses performed using Matlab© to explore trends of elevation as a factor indicated that multiple trunk plants are more commonly found at higher elevations than single trunk plants, there is a positive correlation of trunk diameter with elevation, and that canopy volume has a negative correlation with respect to elevation. It was concluded that microhabitats where B. microphylla occurs at the northern limit of its range require a particular combination of abiotic features that can be easily altered by climatic changes.
ContributorsCordova, Cesar, M.S (Author) / Steele, Kelly P. (Thesis advisor) / Tridane, Abdessaman (Committee member) / Miller, William (Committee member) / Brady, Ward (Committee member) / Arizona State University (Publisher)
Created2011
156116-Thumbnail Image.png
Description
Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However,

Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However, we choose a different path to find frameshift

neo-antigens at the mRNA level and develop broadly effective cancer vaccines based on

frameshift antigens.

In this dissertation, I have summarized and characterized all the potential frameshift

antigens from microsatellite regions in human, dog and mouse. A list of frameshift

antigens was validated by PCR in tumor samples and the mutation rate was calculated for

one candidate – SEC62. I develop a method to screen the antibody response against

frameshift antigens in human and dog cancer patients by using frameshift peptide arrays.

Frameshift antigens selected by positive antibody response in cancer patients or by MHC

predictions show protection in different mouse tumor models. A dog version of the

cancer vaccine based on frameshift antigens was developed and tested in a small safety

trial. The results demonstrate that the vaccine is safe and it can induce strong B and T cell

immune responses. Further, I built the human exon junction frameshift database which

includes all possible frameshift antigens from mis-splicing events in exon junctions, and I

develop a method to find potential frameshift antigens from large cancer

immunosignature dataset with these databases. In addition, I test the idea of ‘early cancer

diagnosis, early treatment’ in a transgenic mouse cancer model. The results show that

ii

early treatment gives significantly better protection than late treatment and the correct

time point for treatment is crucial to give the best clinical benefit. A model for early

treatment is developed with these results.

Frameshift neo-antigens from microsatellite regions and mis-splicing events are

abundant at mRNA level and they are better antigens than neo-antigens from point

mutations in the genomic sequences of cancer patients in terms of high immunogenicity,

low probability to cause autoimmune diseases and low cost to develop a broadly effective

vaccine. This dissertation demonstrates the feasibility of using frameshift antigens for

cancer vaccine development.
ContributorsZhang, Jian (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Stafford, Phillip (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2018