This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

190968-Thumbnail Image.png
Description
Riparian ecosystems comprise less than 2% of the landscape in the arid western U.S. yet provide habitat and resources to over half of arid-land wildlife species, including a broad diversity of anurans (frogs and toads). I surveyed anurans using passive acoustic monitoring to capture spring advertisement calls in wilderness area

Riparian ecosystems comprise less than 2% of the landscape in the arid western U.S. yet provide habitat and resources to over half of arid-land wildlife species, including a broad diversity of anurans (frogs and toads). I surveyed anurans using passive acoustic monitoring to capture spring advertisement calls in wilderness area tributaries of the Verde River, Arizona, USA. In the spring and summer of 2021 and 2022, 13-29 autonomous recording units (ARUs) were deployed along perennial, intermittent, and ephemeral reaches across eight headwater streams. I characterized stream reaches based on the percent of pool, riffle, run, and side channel habitat within 100 meters of each ARU. I quantified substrate, discharge at 95% exceedance probability, flow width, and canopy cover at each site. To relate anuran occupancy and relative habitat use to environmental and hydrological variables, I evaluated acoustic data using single-species occupancy and Royle-Nichols and N-mixture (relative habitat use) models. Four species were detected in this study: canyon treefrog (Hyla arenicolor), red-spotted toad (Anaxyrus punctatus), Woodhouse’s toad (Anaxyrus woodhousii), and non-native American bullfrog (Lithobates catesbeianus), with canyon treefrog being the most ubiquitous species observed. Occupancy of canyon treefrog was greater at perennial and intermittent sites compared to ephemeral sites, and presence of pool was the most important driver of canyon treefrog occupancy and relative habitat use. Notably, this study did not detect several species with historical records in the middle Verde River watershed, including Arizona toad (Anaxyrus microscaphus) and Northern leopard frog (Lithobates pipiens). Given climate change-related flow declines and intensifying demands for water in the Southwest, maintaining stream flows that provide consistent and suitable hydroregimes for anuran breeding and larval development is of increasing importance. Determining habitat use and flow regimes necessary to support anuran populations can aid in prioritization of conservation actions related to water management and predict how changes in water availability may impact stream-breeding anurans.
ContributorsHuck, Margaret (Author) / Bateman, Heather L (Thesis advisor) / Albuquerque, Fabio S (Thesis advisor) / Lewis, Jesse S (Committee member) / Arizona State University (Publisher)
Created2023