This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 10
Filtering by

Clear all filters

151709-Thumbnail Image.png
Description
Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of

Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of five AWS and five paired control sites (treatments) in the surrounding Sonoran desert from October 2011 to May 2012. I measured plant species richness, density, and percent cover in the spring of 2012. A Multi-response Permutation Procedure was used to identify differences in small mammal community abundance, biomass, and species richness by season and treatment. I used Principle Component Analysis to reduce 11 habitat characteristics to five habitat factors. I related rodent occurrence to habitat characteristics using multiple and logistic regression. A total of 370 individual mammals representing three genera and eight species of rodents were captured across 4800 trap nights. Desert pocket mouse (Chaetodipus penicillatus) was the most common species in both seasons and treatments. Whereas rodent community abundance, biomass, and richness were similar between seasons, community variables of AWS were greater than CS. Rodent diversity was similar between treatments. Desert pocket mouse abundance and biomass were twice as high at AWS when compared to controls. Biomass of white-throated woodrat (Neotoma albigula) was five times greater at AWS. Habitat characteristics were similar between treatments. Neither presence of water nor distance to water explained substantial habitat variation. Occurrence of rodent species was associated with habitat characteristics. Desert rodent communities are adapted for arid environments (i.e. Heteromyids) and are not dependent on "free water". Higher abundances of desert pocket mouse at AWS were most likely related to increased disturbance and debris and not the presence of water. The results of this study and previous studies suggest that more investigation is needed and that short term studies may not be able to detect interactions (if any) between AWS and desert small mammal communities.
ContributorsSwitalski, Aaron (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2013
151334-Thumbnail Image.png
Description
Biological diversity is threatened by increasing anthropogenic modification of natural environments and increasing demands on natural resources. Sonoran desert tortoises (Gopherus morafkai) currently have Candidate status under the Endangered Species Act (ESA) based on health and habitat threats. To ensure this animal persists in the midst of multiple threats requires

Biological diversity is threatened by increasing anthropogenic modification of natural environments and increasing demands on natural resources. Sonoran desert tortoises (Gopherus morafkai) currently have Candidate status under the Endangered Species Act (ESA) based on health and habitat threats. To ensure this animal persists in the midst of multiple threats requires an understanding of the life history and ecology of each population. I looked at one physiological and one behavioral aspect of a population of tortoises at the Sugarloaf Mountain (SL) study site in central Arizona, USA. I used 21 years of capture-recapture records to estimate growth parameters of the entire population. I investigated habitat selection of juvenile tortoises by selecting 117 locations of 11 tortoises that had been tracked by radio-telemetry one to three times weekly for two years, selecting locations from both summer active season and during winter hibernation. I compared 22 microhabitat variables of tortoise locations to random SL locations to determine habitat use and availability. Male tortoises at SL reach a greater asymptotic length than females, and males and females appear to grow at the same rate. Juvenile tortoises at the SL site use steep rocky hillsides with high proportions of sand and annual vegetation, few succulents, and enclosed shelters in summer. They use enclosed shelters on steep slopes for winter hibernation. An understanding of these features can allow managers to quantify Sonoran desert tortoise habitat needs and life history characteristics and to understand the impact of land use policies.
ContributorsBridges, Andrew (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Ulrich, Jon (Committee member) / Arizona State University (Publisher)
Created2012
152411-Thumbnail Image.png
Description
Mathematical modeling of infectious diseases can help public health officials to make decisions related to the mitigation of epidemic outbreaks. However, over or under estimations of the morbidity of any infectious disease can be problematic. Therefore, public health officials can always make use of better models to study the potential

Mathematical modeling of infectious diseases can help public health officials to make decisions related to the mitigation of epidemic outbreaks. However, over or under estimations of the morbidity of any infectious disease can be problematic. Therefore, public health officials can always make use of better models to study the potential implication of their decisions and strategies prior to their implementation. Previous work focuses on the mechanisms underlying the different epidemic waves observed in Mexico during the novel swine origin influenza H1N1 pandemic of 2009 and showed extensions of classical models in epidemiology by adding temporal variations in different parameters that are likely to change during the time course of an epidemic, such as, the influence of media, social distancing, school closures, and how vaccination policies may affect different aspects of the dynamics of an epidemic. This current work further examines the influence of different factors considering the randomness of events by adding stochastic processes to meta-population models. I present three different approaches to compare different stochastic methods by considering discrete and continuous time. For the continuous time stochastic modeling approach I consider the continuous-time Markov chain process using forward Kolmogorov equations, for the discrete time stochastic modeling I consider stochastic differential equations using Wiener's increment and Poisson point increments, and also I consider the discrete-time Markov chain process. These first two stochastic modeling approaches will be presented in a one city and two city epidemic models using, as a base, our deterministic model. The last one will be discussed briefly on a one city SIS and SIR-type model.
ContributorsCruz-Aponte, Maytee (Author) / Wirkus, Stephen A. (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Camacho, Erika T. (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
152845-Thumbnail Image.png
Description
There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. This fast growing theory provides new constraints and mechanisms that can be formulated into mathematical models. Stoichiometric models incorporate the effects of both food quantity and food quality into a single framework

There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. This fast growing theory provides new constraints and mechanisms that can be formulated into mathematical models. Stoichiometric models incorporate the effects of both food quantity and food quality into a single framework that produce rich dynamics. While the effects of nutrient deficiency on consumer growth are well understood, recent discoveries in ecological stoichiometry suggest that consumer dynamics are not only affected by insufficient food nutrient content (low phosphorus (P): carbon (C) ratio) but also by excess food nutrient content (high P:C). This phenomenon, known as the stoichiometric knife edge, in which animal growth is reduced not only by food with low P content but also by food with high P content, needs to be incorporated into mathematical models. Here we present Lotka-Volterra type models to investigate the growth response of Daphnia to algae of varying P:C ratios. Using a nonsmooth system of two ordinary differential equations (ODEs), we formulate the first model to incorporate the phenomenon of the stoichiometric knife edge. We then extend this stoichiometric model by mechanistically deriving and tracking free P in the environment. This resulting full knife edge model is a nonsmooth system of three ODEs. Bifurcation analysis and numerical simulations of the full model, that explicitly tracks phosphorus, leads to quantitatively different predictions than previous models that neglect to track free nutrients. The full model shows that the grazer population is sensitive to excess nutrient concentrations as a dynamical free nutrient pool induces extreme grazer population density changes. These modeling efforts provide insight on the effects of excess nutrient content on grazer dynamics and deepen our understanding of the effects of stoichiometry on the mechanisms governing population dynamics and the interactions between trophic levels.
ContributorsPeace, Angela (Author) / Kuang, Yang (Thesis advisor) / Elser, James J (Committee member) / Baer, Steven (Committee member) / Tang, Wenbo (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
153262-Thumbnail Image.png
Description
In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth is directly dependent on intracellular nutrient concentration is useful for understanding the dynamics in many ecological systems. The cell quota

In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth is directly dependent on intracellular nutrient concentration is useful for understanding the dynamics in many ecological systems. The cell quota in particular lends itself to ecological stoichiometry, which is a powerful framework for mathematical ecology. Three models are developed based on the cell quota principal in order to demonstrate its applications beyond chemostat culture.

First, a data-driven model is derived for neutral lipid synthesis in green microalgae with respect to nitrogen limitation. This model synthesizes several established frameworks in phycology and ecological stoichiometry. The model demonstrates how the cell quota is a useful abstraction for understanding the metabolic shift to neutral lipid production that is observed in certain oleaginous species.

Next a producer-grazer model is developed based on the cell quota model and nutrient recycling. The model incorporates a novel feedback loop to account for animal toxicity due to accumulation of nitrogen waste. The model exhibits rich, complex dynamics which leave several open mathematical questions.

Lastly, disease dynamics in vivo are in many ways analogous to those of an ecosystem, giving natural extensions of the cell quota concept to disease modeling. Prostate cancer can be modeled within this framework, with androgen the limiting nutrient and the prostate and cancer cells as competing species. Here the cell quota model provides a useful abstraction for the dependence of cellular proliferation and apoptosis on androgen and the androgen receptor. Androgen ablation therapy is often used for patients in biochemical recurrence or late-stage disease progression and is in general initially effective. However, for many patients the cancer eventually develops resistance months to years after treatment begins. Understanding how and predicting when hormone therapy facilitates evolution of resistant phenotypes has immediate implications for treatment. Cell quota models for prostate cancer can be useful tools for this purpose and motivate applications to other diseases.
ContributorsPacker, Aaron (Author) / Kuang, Yang (Thesis advisor) / Nagy, John (Committee member) / Smith, Hal (Committee member) / Kostelich, Eric (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
150097-Thumbnail Image.png
Description
Once considered an abundant species in the eastern United States, local populations of red-shouldered hawks, Buteo lineatus, have declined due to habitat destruction. This destruction has created suitable habitat for red-tailed hawks, Buteo jamaicensis, and therefore increased competition between these two raptor species. Since suitable habitat is the main limiting

Once considered an abundant species in the eastern United States, local populations of red-shouldered hawks, Buteo lineatus, have declined due to habitat destruction. This destruction has created suitable habitat for red-tailed hawks, Buteo jamaicensis, and therefore increased competition between these two raptor species. Since suitable habitat is the main limiting factor for raptors, a computer model was created to simulate the effect of habitat loss in central Maryland and the impact of increased competition between the more aggressive red-tailed hawk. These simulations showed urban growth contributed to over a 30% increase in red-tailed hawk habitat as red-shouldered hawk habitat decreased 62.5-70.1% without competition and 71.8-76.3% with competition. However there was no significant difference seen between the rate of available habitat decline for current and predicted development growth.
ContributorsMurillo, Crystal (Author) / Whysong, Gary (Thesis advisor) / Alford, Eddie (Committee member) / Miller, William (Committee member) / Arizona State University (Publisher)
Created2011
151016-Thumbnail Image.png
Description
Human recreation on rangelands may negatively impact wildlife populations. Among those activities, off-road vehicle (ORV) recreation carries the potential for broad ecological consequences. A study was undertaken to assess the impacts of ORV on rodents in Arizona Uplands Sonoran Desert. Between the months of February and September 2010, rodents were

Human recreation on rangelands may negatively impact wildlife populations. Among those activities, off-road vehicle (ORV) recreation carries the potential for broad ecological consequences. A study was undertaken to assess the impacts of ORV on rodents in Arizona Uplands Sonoran Desert. Between the months of February and September 2010, rodents were trapped at 6 ORV and 6 non-ORV sites in Tonto National Forest, AZ. I hypothesized that rodent abundance and species richness are negatively affected by ORV use. Rodent abundances were estimated using capture-mark-recapture methodology. Species richness was not correlated with ORV use. Although abundance of Peromyscus eremicus and Neotoma albigula declined as ORV use increased, abundance of Dipodomys merriami increased. Abundance of Chaetodipus baileyi was not correlated with ORV use. Other factors measured were percent ground cover, percent shrub cover, and species-specific shrub cover percentages. Total shrub cover, Opuntia spp., and Parkinsonia microphylla each decreased as ORV use increased. Results suggest that ORV use negatively affects rodent habitats in Arizona Uplands Sonoran Desert, leading to declining abundance in some species. Management strategies should mitigate ORV related habitat destruction to protect vulnerable populations.
ContributorsReid, John Simon (Author) / Brady, Ward (Thesis advisor) / Miller, William (Committee member) / Bateman, Heather (Committee member) / Arizona State University (Publisher)
Created2012
149833-Thumbnail Image.png
Description
ABSTRACT The elephant tree, Bursera microphylla, is at the northern limit of its range in central Arizona. This species is sensitive to frost damage thus limiting its occurrence in more northern areas of the southwest. Marginal populations of B. microphylla are found in mountain ranges of Central Arizona and are

ABSTRACT The elephant tree, Bursera microphylla, is at the northern limit of its range in central Arizona. This species is sensitive to frost damage thus limiting its occurrence in more northern areas of the southwest. Marginal populations of B. microphylla are found in mountain ranges of Central Arizona and are known to occur in the rugged mountain range system of the South Mountain Municipal Park (SMMP). Little is known of the distribution of this species within the park and details relevant to the health of both individual plants and the population such as diameter and number of trunks, height, and presence of damage have not been examined. This study was designed, in part, to test the hypothesis that favorable microhabitats at SMMP are created by particular combinations of abiotic features including aspect, slope, elevation and solar radiation. Data on abiotic factors, as well as specific individual plant locations and characteristics were obtained for 100 individuals. Temperature data was collected in vertical transects at different altitudinal levels. Some of these data were used in spatial analyses to generate a habitat suitability model using GIS software. Furthermore, collected data was analyzed using Matlab© software to identify potential trends in the variation of morphological traits. In addition, for comparative purposes similar information at one hundred computer-generated randomly chosen points throughout SMMP was obtained. The GIS spatial analyses indicated that aspect, slope, elevation, and relative solar radiance are strongly associated as major climatic components of the microhabitat of B. microphylla. Temperature data demonstrated that there are significant differences in ambient temperature among different altitudinal gradients with middle elevations being more favorable. Furthermore, analyses performed using Matlab© to explore trends of elevation as a factor indicated that multiple trunk plants are more commonly found at higher elevations than single trunk plants, there is a positive correlation of trunk diameter with elevation, and that canopy volume has a negative correlation with respect to elevation. It was concluded that microhabitats where B. microphylla occurs at the northern limit of its range require a particular combination of abiotic features that can be easily altered by climatic changes.
ContributorsCordova, Cesar, M.S (Author) / Steele, Kelly P. (Thesis advisor) / Tridane, Abdessaman (Committee member) / Miller, William (Committee member) / Brady, Ward (Committee member) / Arizona State University (Publisher)
Created2011
171918-Thumbnail Image.png
Description
Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of

Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of dominance behavior using the ponerine ant Harpegnathos saltator. All H. saltator females have the ability to reproduce. Only those with a queen morphology that enables dispersal, however, show putative sex pheromones. In contrast, those with a worker morphology normally express dominance behavior. To evaluate how worker-like dominance behavior and associated traits could be expressed in queens, I removed the wings from alate gynes, those with a queen morphology who had not yet mated or left the nest, making them dealate. Compared to gynes with attached wings, dealates frequently performed dominance behavior. In addition, only the dealates demonstrated worker-like ovarian activity in the presence of reproductive individuals, whereas gynes with wings produced sex pheromones exclusively. Therefore, the attachment of wings determines a gyne’s expression of worker-like dominance behavior and physiology. When the queen dies, workers establish a reproductive hierarchy among themselves by performing a combination of dominance behaviors. To understand how reproductive status depends on these interactions as well as a worker’s age, I measured the frequency of dominance behaviors in groups of different size composed of young and old workers. The number of workers who expressed dominance scaled with the size of the group, but younger ones were more likely to express dominance behavior and eventually become reproductive. Therefore, the predisposition of age integrates with a self-organized process to form this reproductive hierarchy. A social insect’s fecundity and fertility signal depends on social context because fecundity increases with colony size. To evaluate how a socially dependent signal regulates dominance behavior, I manipulated a reproductive worker’s social context. Reproductive workers with reduced fecundity and a less prominent fertility signal expressed more dominance behavior than those with a stronger fertility signal and higher fecundity. Therefore, dominance behavior reinforces rank to compensate for a weak signal, indicating how social context can feed back to influence the maintenance of dominance. Mechanisms that regulate H. saltator’s reproductive hierarchy can inform how the reproductive division of labor is regulated in other groups of animals.
ContributorsPyenson, Benjamin (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Committee member) / Fewell, Jennifer (Committee member) / Pratt, Stephen (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2022
193362-Thumbnail Image.png
Description
The Northwest (NW) Atlantic porbeagle Lamna nasus is overfished and captured as bycatch in fisheries within the region. A comprehensive understanding of the population’s life history (e.g., reproduction) and habitat use, and the impact of capture with different gear types (e.g., post-release mortality) is needed to ensure effective fisheries management

The Northwest (NW) Atlantic porbeagle Lamna nasus is overfished and captured as bycatch in fisheries within the region. A comprehensive understanding of the population’s life history (e.g., reproduction) and habitat use, and the impact of capture with different gear types (e.g., post-release mortality) is needed to ensure effective fisheries management plans, develop bycatch mitigation strategies, and support stock recovery. This research used satellite tagging technologies to address gaps in knowledge needed to support management and conservation decisions for the NW Atlantic porbeagle. I provided the first estimate of post-release survival and recovery periods for immature porbeagles captured with rod-and-reel. Although survival was high (100%), juvenile porbeagles exhibited a recovery period in surface waters that may make them vulnerable to further fishing interactions. Next, I described the vertical habitat use of young porbeagles to recommend possible fishing modifications to reduce risk of capture. Young porbeagles spent more time in surface waters during summer compared to fall and during the night compared to day, suggesting that risk of capture may be reduced by setting gear deeper during summer and at night when this life stage’s behavior is reduced to the upper water column. Then, I provided an analysis of the seasonal and life stage-based habitat use of porbeagles. Space use was concentrated in continental shelf waters around Cape Cod, Massachusetts regardless of season and life stage. Given the relatively small and static high occupancy area overlaps with a high concentration of fishing activity, this region could be considered for spatial management of the NW Atlantic porbeagle. Finally, I used ultrasonography and satellite tagging to describe the three-dimensional habitat use of gravid porbeagles for the first time. Gravid porbeagles demonstrated seasonal differences in horizontal and vertical habitat use but spent most of the pupping season in waters southeast of Cape Cod or on Georges Bank, suggesting this region may be serving as a pupping ground for at least a portion of this population. Conservation efforts should focus on these important habitats to protect the next generation of porbeagles.
ContributorsAnderson, Brooke Nicole (Author) / Ferry, Lara (Thesis advisor) / Bowlby, Heather (Committee member) / Hammerschlag, Neil (Committee member) / Kang, Yun (Committee member) / Saul, Steven (Committee member) / Sulikowski, James (Committee member) / Arizona State University (Publisher)
Created2024