This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

156422-Thumbnail Image.png
Description
Aboveground net primary production (ANPP) and belowground net primary production (BNPP) may not be influenced equally by the same factors in arid grasslands. Precipitation is known to affect ANPP and BNPP, while soil fauna such as nematodes affect the BNPP through herbivory and predation. This study on black grama grass

Aboveground net primary production (ANPP) and belowground net primary production (BNPP) may not be influenced equally by the same factors in arid grasslands. Precipitation is known to affect ANPP and BNPP, while soil fauna such as nematodes affect the BNPP through herbivory and predation. This study on black grama grass (Bouteloua eriopoda) in the Chihuahuan Desert investigates the effects of precipitation and nematode presence or absence on net primary production (NPP) as well as the partitioning between the aboveground and belowground components, in this case, the fraction of total net primary production occurring belowground (fBNPP). I used a factorial experiment to investigate the effects of both precipitation and nematode presence on the components of NPP. I used rainout shelters and an irrigation system to alter precipitation totals, while I used defaunated and re-inoculated soil for the nematode treatments. Precipitation treatment and seasonal soil moisture had no effect on the BNPP and a nonsignificant positive effect on the ANPP. The fBNPP decreased with increasing precipitation and seasonal soil moisture, though without a significant effect. No predator nematodes were found in any of the microcosms at the end of the experiment, though other functional groups of nematodes, including herbivores, were found in the microcosms. Total nematode numbers did not vary significantly between nematode treatments, indicating that the inoculation process did not last for the whole experiment or that nematodes had little plant material to eat and resulted in low population density. Nematode presence did not affect the BNPP, ANPP, or the fBNPP. There were no significant interactions between precipitation and nematode treatment. The results are inconclusive, possibly as a result of ecosystem trends during an unusually high precipitation year, as well as the very low NPP values in the experiment that correlated with low nematode community numbers.
ContributorsWiedenfeld, Amy (Author) / Sala, Osvaldo (Thesis advisor) / Gerber, Leah (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2018
155257-Thumbnail Image.png
Description
Birds have shown promise as models of diabetes due to health and longevity despite naturally high plasma glucose concentrations, a condition which in diabetic humans leads to protein glycation and various complications. Research into mechanisms that protect birds from high plasma glucose have shown that some species of birds have

Birds have shown promise as models of diabetes due to health and longevity despite naturally high plasma glucose concentrations, a condition which in diabetic humans leads to protein glycation and various complications. Research into mechanisms that protect birds from high plasma glucose have shown that some species of birds have naturally low levels of protein glycation. Some hypothesize a diet rich in carotenoids and other antioxidants protects birds from protein glycation and oxidative damage. There is little research, however, into the amount of protein glycation in birds of prey, which consume a high protein, high fat diet. No studies have examined the potential link between the diet of carnivorous birds and protein glycation. The overall purpose of this study was to evaluate whether birds of prey have higher protein glycation given their high protein, high fat diet in comparison to chickens, which consume a diet higher in carbohydrates. This was accomplished through analyses of serum samples from select birds of prey (bald eagle, red-tailed hawk, barred owl, great horned owl). Serum samples were obtained from The Raptor Center at the University of Minnesota where the birds of prey consumed high protein, high fat, non-supplemented diets that consisted of small animals and very little to no carbohydrate. Serum was also obtained from one chicken for a control, which consumed a higher carbohydrate and antioxidant-rich diet. Glucose, native albumin glycation and antioxidant concentrations (uric acid, vitamin E, retinol and several carotenoids) of each sample was measured. Statistical analyses showed significant between group differences in percent protein glycation amongst the birds of prey species. Glycation was significantly higher (p < 0.001) in bald eagles (23.67 ± 1.90%) and barred owls (24.28 ± 1.43%) compared to red-tailed hawks (14.31 ± 0.63%). Percent glycation was higher in all birds of prey compared to the chicken sample and literature values for chicken albumin glycation. Levels of the carotenoid lutein were significantly higher in bald eagles and barred owls compared to great horned owls and red-tailed hawks and the carotenoids beta-cryptoxanthin and beta-carotene were significantly greater in bald eagles compared to red-tailed hawks and great horned owls.
ContributorsIngram, Tana (Author) / Sweazea, Karen (Thesis advisor) / Johnston, Carol (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2017
187834-Thumbnail Image.png
Description

This feasibility study explored the use of an evolutionary mismatch narrative in nutritional education intervention aiming to reduce ultra-processed foods in the diets of veterans with type 2 diabetes and improve diabetic outcomes. Ultra-processed foods are foods that are primarily manufactured through industrial processes. These foods are high in calories

This feasibility study explored the use of an evolutionary mismatch narrative in nutritional education intervention aiming to reduce ultra-processed foods in the diets of veterans with type 2 diabetes and improve diabetic outcomes. Ultra-processed foods are foods that are primarily manufactured through industrial processes. These foods are high in calories but low in nutritional content. Diets high in these foods have been linked to increased health risks. One of the major health risks is type 2 diabetes. Type 2 diabetes is a chronic disease that is developed when cells become unable to properly utilize insulin. Over time this may lead to additional health conditions such as nerve damage, cardiovascular disease, and renal disease. Evolutionary mismatch narrative nutritional intervention offers a different approach to nutritional education to help reduce ultra-processed foods in diets. This study was a randomized controlled feasibility study at the Phoenix VA. Eleven participants were enrolled and randomly selected to be given either an evolutionary mismatch narrative education intervention or general nutritional education about ultra-processed foods. 24-hour diet recalls and blood chemistry were collected and analyzed. Blood chemistry provided diabetes related measurements which included glucose, HbA1c, insulin, HOMA-IR, and C-reactive protein. Statistically significant findings in this study included percentage of ultra-processed foods decreasing for both control and experimental groups from week 0 to week 4 (p=0.014), and C-reactive protein levels between the control and experimental groups (p=0.042). However, baseline C-reactive protein concentrations were lower in the experimental group such that normalizing for group differences at baseline revealed no significant difference in C-reactive protein change between interventions (p = 1.000). There were no other statistically significant values regarding diabetes related measurements. The results from this study suggest that nutritional education in general may help decrease ultra-processed food consumption.

ContributorsLiang, Nathan Adam (Author) / Sweazea, Karen (Thesis advisor) / Basile, Anthony J (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2023
191702-Thumbnail Image.png
Description
Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is

Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is through the reduction of the mosquito vector population size and/or reducing vector-human contact using insecticides. Frontline tools in malaria (an MBD caused by a parasite) control and elimination have been drugs (targeting the malaria parasite) and insecticides (targeting the vectors) through indoor residual spraying (IRS) (spraying the internal walls and sometimes the roofs of dwellings with residual insecticides to kill adult mosquito vectors), and long-lasting insecticidal nets (LLINs), while arboviral vectors are frequently targeted using outdoor fogging and space spraying (indoor or outdoor spraying of insecticides to kill adult mosquito vectors). Integrative and novel vector control efforts are urgently needed since the aforementioned tools may not be as effective against those mosquito species that are resistant to insecticides and/or have a different (or changed) behavior allowing them to avoid existing tools. In Chapters 2 and 3, I investigate mosquito vector surveillance in Arizona by (i) discussing the species composition and public health implications of the State’s mosquito fauna, and (ii) comparing the effectiveness of 4 different carbon dioxide (CO2) sources in attracting different mosquito species on the Arizona State University Tempe Campus. In Chapters 4 and 5, I investigate a novel vector control tool by (i) completing a literature review on using electric fields (EFs) to control insects, and (ii) presenting novel data on using Insulated Conductor Wires (ICWs) to generate EFs that prevent host-seeking female Aedes aegypti from entering spaces. In Chapter 6, I discuss the non-target effects of chemical malaria control on other arthropods, including other biological and mechanical infectious disease vectors. Overall, this dissertation highlights the important role that the development of novel surveillance and vector control tools could play in improved mosquito control, which ultimately will reduce disease morbidity and mortality.
ContributorsJobe, Ndey Bassin (Author) / Paaijmans, Krijn (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Huijben, Silvie (Committee member) / Arizona State University (Publisher)
Created2024
158570-Thumbnail Image.png
Description
Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic

Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic drivers such as photodegradation are commonly perceived to be more important. I assessed the significance of microbes to the decay of plant litter in the Sonoran Desert. I found that the variation in decay among 16 leaf litter types was correlated with microbial respiration rates (i.e. CO2 emission) from litter, and rates were strongly correlated with water-vapor sorption rates of litter. Water-vapor sorption during high-humidity periods activates microbes and subsequent respiration appears to be a significant decay mechanism. I also found that exposure to sunlight accelerated litter decay (i.e. photodegradation) and enhanced subsequent respiration rates of litter. The abundance of bacteria (but not fungi) on the surface of litter exposed to sunlight was strongly correlated with respiration rates, as well as litter decay, implying that exposure to sunlight facilitated activity of surface bacteria which were responsible for faster decay. I also assessed the response of respiration to temperature and moisture content (MC) of litter, as well as the relationship between relative humidity and MC. There was a peak in respiration rates between 35-40oC, and, unexpectedly, rates increased from 55 to 70oC with the highest peak at 70oC, suggesting the presence of thermophilic microbes or heat-tolerant enzymes. Respiration rates increased exponentially with MC, and MC was strongly correlated with relative humidity. I used these relationships, along with litter microclimate and C loss data to estimate the contribution of this pathway to litter C loss over 34 months. Respiration was responsible for 24% of the total C lost from litter – this represents a substantial pathway for C loss, over twice as large as the combination of thermal and photochemical abiotic emission. My findings elucidate two mechanisms that explain why microbial drivers were more significant than commonly assumed: activation of microbes via water-vapor sorption and high respiration rates at high temperatures.
ContributorsTomes, Alexander (Author) / Day, Thomas (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Ball, Becky (Committee member) / Hall, Sharon (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2020