This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 7 of 7
Filtering by

Clear all filters

149729-Thumbnail Image.png
Description
Division of labor, whereby different group members perform different functions, is a fundamental attribute of sociality. It appears across social systems, from simple cooperative groups to complex eusocial colonies. A core challenge in sociobiology is to explain how patterns of collective organization are generated. Theoretical models propose that division of

Division of labor, whereby different group members perform different functions, is a fundamental attribute of sociality. It appears across social systems, from simple cooperative groups to complex eusocial colonies. A core challenge in sociobiology is to explain how patterns of collective organization are generated. Theoretical models propose that division of labor self-organizes, or emerges, from interactions among group members and the environment; division of labor is also predicted to scale positively with group size. I empirically investigated the emergence and scaling of division of labor in evolutionarily incipient groups of sweat bees and in eusocial colonies of harvester ants. To test whether division of labor is an emergent property of group living during early social evolution, I created de novo communal groups of the normally solitary sweat bee Lasioglossum (Ctenonomia) NDA-1. A division of labor repeatedly arose between nest excavation and guarding tasks; results were consistent with hypothesized effects of spatial organization and intrinsic behavioral variability. Moreover, an experimental increase in group size spontaneously promoted higher task specialization and division of labor. Next, I examined the influence of colony size on division of labor in larger, more integrated colonies of the harvester ant Pogonomyrmex californicus. Division of labor scaled positively with colony size in two contexts: during early colony ontogeny, as colonies grew from tens to hundreds of workers, and among same-aged colonies that varied naturally in size. However, manipulation of colony size did not elicit a short-term response, suggesting that the scaling of division of labor in P. californicus colonies is a product of functional integration and underlying developmental processes, rather than a purely emergent epiphenomenon. This research provides novel insights into the organization of work in insect societies, and raises broader questions about the role of size in sociobiology.
ContributorsHolbrook, Carter Tate (Author) / Fewell, Jennifer H (Thesis advisor) / Gadau, Jürgen (Committee member) / Harrison, Jon F. (Committee member) / Hölldobler, Berthold (Committee member) / Johnson, Robert A. (Committee member) / Arizona State University (Publisher)
Created2011
156388-Thumbnail Image.png
Description
The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance

The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance from a mutated protein; this process occurs when the MarR regulates an operon. We hypothesized that different transcriptional regulator genes have interactions with each other. It is known that Salmonella pagC transcription is activated by three regulators, i.e., SlyA, MprA, and PhoP. Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) system was used to research the protein-protein interactions in SlyA, MprA, and PhoP as heterodimers and homodimers in vivo. Two fragments, T25 and T18, that lack endogenous adenylate cyclase activity, were used for construction of chimeric proteins and reconstruction of adenylate cyclase activity was tested. The significant adenylate cyclase activities has proved that SlyA is able to form homodimers. However, weak adenylate cyclase activities in this study has proved that MprA and PhoP are not likely to form homodimers, and no protein-protein interactions were detected in between SlyA, MprA and PhoP, which no heterodimers have formed in between three transcriptional regulators.
ContributorsTao, Zenan (Author) / Shi, Yixin (Thesis advisor) / Wang, Xuan (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2018
154806-Thumbnail Image.png
Description
The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the

The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants.
ContributorsCash, Elizabeth I (Author) / Gadau, Jürgen (Thesis advisor) / Liebig, Jürgen (Thesis advisor) / Fewell, Jennifer (Committee member) / Hölldobler, Berthold (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2016
154836-Thumbnail Image.png
Description
Emergence of multidrug resistant (MDR) bacteria is a major concern to global health. One of the major MDR mechanisms bacteria employ is efflux pumps for the expulsion of drugs from the cell. In Escherichia coli, AcrAB-TolC proteins constitute the major chromosomally-encoded drug efflux system. AcrB, a trimeric membrane protein is

Emergence of multidrug resistant (MDR) bacteria is a major concern to global health. One of the major MDR mechanisms bacteria employ is efflux pumps for the expulsion of drugs from the cell. In Escherichia coli, AcrAB-TolC proteins constitute the major chromosomally-encoded drug efflux system. AcrB, a trimeric membrane protein is well-known for its substrate promiscuity. It has the ability to efflux a broad spectrum of substrates alongside compounds such as dyes, detergent, bile salts and metabolites. Newly identified AcrB residues were shown to be functionally relevant in the drug binding and translocation pathway using a positive genetic selection strategy. These residues—Y49, V127, D153, G288, F453, and L486—were identified as the sites of suppressors of an alteration, F610A, that confers a drug hypersensitivity phenotype. Using site-directed mutagenesis (SDM) along with the real-time efflux and the classical minimum inhibitory concentration (MIC) assays, I was able to characterize the mechanism of suppression.

Three approaches were used for the characterization of these suppressors. The first approach focused on side chain specificity. The results showed that certain suppressor sites prefer a particular side chain property, such as size, to overcome the F610A defect. The second approach focused on the effects of efflux pump inhibitors. The results showed that though the suppressor residues were able to overcome the intrinsic defect of F610A, they were unable to overcome the extrinsic defect caused by the efflux pump inhibitors. This showed that the mechanism by which F610A imposes its effect on AcrB function is different than that of the efflux pump inhibitors. The final approach was to determine whether suppressors mapping in the periplasmic and trans-membrane domains act by the same or different mechanisms. The results showed both overlapping and distinct mechanisms of suppression.

To conclude, these approaches have provided a deeper understanding of the mechanisms by which novel suppressor residues of AcrB overcome the functional defect of the drug binding domain alteration, F610A.
ContributorsBlake, Mellecha (Author) / Misra, Rajeev (Thesis advisor) / Stout, Valerie (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
154350-Thumbnail Image.png
Description
Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular approach focused on decoupling biomass synthesis from the production of the phenylalanine in a genetically modified strain of E. coli

Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular approach focused on decoupling biomass synthesis from the production of the phenylalanine in a genetically modified strain of E. coli BW25113 was explored with the use of synthetic trans-encoded small RNA (sRNA) to achieve greater efficiency. The naturally occurring sRNA MicC was used as a scaffold, and combined on a plasmid with a promoter for anhydrous tetracycline (aTc) and a T1/TE terminator. The coding sequence corresponding to the target binding site for fourteen potentially growth-essential gene targets as well as non-essential lacZ was placed in the seed region of the of the sRNA scaffold and transformed into BW25113, effectively generating a unique strain for each gene target. The BW25113 strain corresponding to each gene target was screened in M9 minimal media; decreased optical density and elongated cell morphology changes were observed and quantified in all induced sRNA cases where growth-essential genes were targeted. Six of the strains targeting different aspects of cell division that effectively suppressed growth and resulted in increased cell size were then screened for viability and metabolic activity in a scaled-up shaker flask experiment; all six strains were shown to be viable during stationary phase, and a metabolite analysis showed increased specific glucose consumption rates in induced strains, with unaffected specific glucose consumption rates in uninduced strains. The growth suppression, morphology and metabolic activity of the induced strains in BW25113 was compared to the bacteriostatic additives chloramphenicol, tetracycline, and streptomycin. At this same scale, the sRNA plasmid targeting the gene murA was transformed into BW25113 pINT-GA, a phenylalanine overproducer with the feedback resistant genes aroG and pheA overexpressed. Two induction times were explored during exponential phase, and while the optimal induction time was found to increase titer and yield amongst the BW25113 pINT-GA murA sRNA variant, overall this did not have as great a titer or yield as the BW25113 pINT-GA strain without the sRNA plasmid; this may be a result of the cell filamentation.
ContributorsHerschel, Daniel Jordan (Author) / Nielsen, David R (Thesis advisor) / Torres, César I (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
193397-Thumbnail Image.png
Description
Reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and hydroxyl radicals occur naturally as a byproduct of aerobic respiration. To mitigate damages caused by ROS, Escherichia coli employs defenses including two cytosolic superoxide dismutases (SODs), which convert superoxide to hydrogen peroxide. Deletion of both sodA and sodB, the genes coding

Reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and hydroxyl radicals occur naturally as a byproduct of aerobic respiration. To mitigate damages caused by ROS, Escherichia coli employs defenses including two cytosolic superoxide dismutases (SODs), which convert superoxide to hydrogen peroxide. Deletion of both sodA and sodB, the genes coding for the cytosolic SOD enzymes, results in a strain that is unable to grow on minimal medium without amino acid supplementation. Additionally, deletion of both cytosolic SOD enzymes in a background containing the relA1 allele, an inactive version of the relA gene that contributes to activation of stringent response by amino acid starvation, results in a strain that is unable to grow aerobically, even on rich medium. These observations point to a relationship between the stringent response and oxidative stress. To gain insight into this relationship, suppressors were isolated by growing the ∆sodAB relA1 cells aerobically on rich medium, and seven suppressors were further examined to characterize distinct colony sizes and temperature sensitivity phenotypes. In three of these suppressor-containing strains, the relA1 allele was successfully replaced by the wild type relA allele to allow further study in aerobic conditions. None of those three suppressors were found to increase tolerance to exogenous superoxides produced by paraquat, which shows that these mutations only overcome the superoxide buildup that naturally occurs from deletion of SODs. Because each of these suppressors had unique phenotypes, it is likely that they confer tolerance to SOD-dependent superoxide buildup by different mechanisms. Two of these three suppressors have been sent for whole-genome sequencing to identify the location of the suppressor mutation and determine the mechanism by which they confer superoxide tolerance.
ContributorsFlake, Melissa (Author) / Misra, Rajeev (Thesis advisor) / Shah, Dhara (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2024