This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

149899-Thumbnail Image.png
Description
Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members.

Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members. To understand the evolutionary transition from single to multi-queen colonies, I examined a species which exhibits variation both in mode of colony founding and in the queen number of mature colonies. The California harvester ant Pogonomyrmex californicus exhibits both variation in the number of queens that begin a colony (metrosis) and in the number of queens in adult colonies (gyny). Throughout most of its range, colonies begin with one queen (haplometrosis) but in some populations multiple queens cooperate to initiate colonies (pleometrosis). I present results that confirm co-foundresses are unrelated. I also map the geographic occurrence of pleometrotic populations and show that the phenomenon appears to be localized in southern California and Northern Baja California. Additionally, I provide genetic evidence that pleometrosis leads to primary polygyny (polygyny developing from pleometrosis) a phenomenon which has received little attention and is poorly understood. Phylogenetic and haplotype analyses utilizing mitochondrial markers reveal that populations of both behavioral types in California are closely related and have low mitochondrial diversity. Nuclear markers however, indicate strong barriers to gene flow between focal populations. I also show that intrinsic differences in queen behavior lead to the two types of populations observed. Even though populations exhibit strong tendencies on average toward haplo- or pleometrosis, within population variation exists among queens for behaviors relevant to metrosis and gyny. These results are important in understanding the dynamics and evolutionary history of a distinct form of cooperation among unrelated social insects. They also help to understand the dynamics of intraspecific variation and the conflicting forces of local adaptation and gene flow.
ContributorsOverson, Rick P (Author) / Gadau, Jürgen (Thesis advisor) / Fewell, Jennifer H (Committee member) / Hölldobler, Bert (Committee member) / Johnson, Robert A. (Committee member) / Liebig, Jürgen (Committee member) / Arizona State University (Publisher)
Created2011
156201-Thumbnail Image.png
Description
For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays

For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays personality. Animal personality is defined as repeatable individual differences in behavior, and how correlations among these consistent traits are structured is termed behavioral syndromes. Animal personality has been broadly documented across the animal kingdom but is poorly understood in the context of mutualisms. My dissertation focuses on the structure, causes, and consequences of collective personality in Azteca constructor colonies that live in Cecropia trees, one of the most successful and prominent mutualisms of the neotropics. These pioneer plants provide hollow internodes for nesting and nutrient-rich food bodies; in return, the ants provide protection from herbivores and encroaching vines. I first explored the structure of the behavioral syndrome by testing the consistency and correlation of colony-level behavioral traits under natural conditions in the field. Traits were both consistent within colonies and correlated among colonies revealing a behavioral syndrome along a docile-aggressive axis. Host plants of more active, aggressive colonies had less leaf damage, suggesting a link between a colony personality and host plant health. I then studied how aspects of colony sociometry are intertwined with their host plants by assessing the relationship among plant growth, colony growth, colony structure, ant morphology, and colony personality. Colony personality was independent of host plant measures like tree size, age, volume. Finally, I tested how colony personality influenced by soil nutrients by assessing personality in the field and transferring colonies to plants the greenhouse under different soil nutrient treatments. Personality was correlated with soil nutrients in the field but was not influenced by soil nutrient treatment in the greenhouse. This suggests that soil nutrients interact with other factors in the environment to structure personality. This dissertation demonstrates that colony personality is an ecologically relevant phenomenon and an important consideration for mutualism dynamics.
ContributorsMarting, Peter (Author) / Pratt, Stephen C (Thesis advisor) / Wcislo, William T (Committee member) / Hoelldobler, Bert (Committee member) / Fewell, Jennifer H (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2018
171500-Thumbnail Image.png
Description
Advances in sequencing technology have generated an enormous amount of data over the past decade. Equally advanced computational methods are needed to conduct comparative and functional genomic studies on these datasets, in particular tools that appropriately interpret indels within an evolutionary framework. The evolutionary history of indels is complex and

Advances in sequencing technology have generated an enormous amount of data over the past decade. Equally advanced computational methods are needed to conduct comparative and functional genomic studies on these datasets, in particular tools that appropriately interpret indels within an evolutionary framework. The evolutionary history of indels is complex and often involves repetitive genomic regions, which makes identification, alignment, and annotation difficult. While previous studies have found that indel lengths in both deoxyribonucleic acid and proteins obey a power law, probabilistic models for indel evolution have rarely been explored due to their computational complexity. In my research, I first explore an application of an expectation-maximization algorithm for maximum-likelihood training of a codon substitution model. I demonstrate the training accuracy of the expectation-maximization on my substitution model. Then I apply this algorithm on a published 90 pairwise species dataset and find a negative correlation between the branch length and non-synonymous selection coefficient. Second, I develop a post-alignment fixation method to profile each indel event into three different phases according to its codon position. Because current codon-aware models can only identify the indels by placing the gaps between codons and lead to the misalignment of the sequences. I find that the mouse-rat species pair is under purifying selection by looking at the proportion difference of the indel phases. I also demonstrate the power of my sliding-window method by comparing the post-aligned and original gap positions. Third, I create an indel-phase moore machine including the indel rates of three phases, length distributions, and codon substitution models. Then I design a gillespie simulation that is capable of generating true sequence alignments. Next I develop an importance sampling method within the expectation-maximization algorithm that can successfully train the indel-phase model and infer accurate parameter estimates from alignments. Finally, I extend the indel phase analysis to the 90 pairwise species dataset across three alignment methods, including Mafft+sw method developed in chapter 3, coati-sampling methods applied in chapter 4, and coati-max method. Also I explore a non-linear relationship between the dN/dS and Zn/(Zn+Zs) ratio across 90 species pairs.
ContributorsZhu, Ziqi (Author) / Cartwright, Reed A (Thesis advisor) / Taylor, Jay (Committee member) / Wideman, Jeremy (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
171957-Thumbnail Image.png
Description
Cocaine induces long-lasting changes in mesolimbic ‘reward’ circuits of the brain after cessation of use. These lingering changes include the neuronal plasticity that is thought to underlie the chronic relapsing nature of substance use disorders. Genes involved in neuronal plasticity also encode circular RNAs (circRNAs), which are stable, non-coding RNAs

Cocaine induces long-lasting changes in mesolimbic ‘reward’ circuits of the brain after cessation of use. These lingering changes include the neuronal plasticity that is thought to underlie the chronic relapsing nature of substance use disorders. Genes involved in neuronal plasticity also encode circular RNAs (circRNAs), which are stable, non-coding RNAs formed through the back-splicing of pre-mRNA. The Homer1 gene family, which encodes proteins associated with cocaine-induced plasticity, also encodes circHomer1. Based on preliminary evidence from shows cocaine-regulated changes in the ratio of circHomer1 and Homer1b mRNA in the nucleus accumbens (NAc), this study examined the relationship between circHomer1 and incentive motivation for cocaine by using different lengths of abstinence to vary the degree of motivation. Male and female rats were trained to self-administer cocaine (0.75 mg/kg/infusion, IV) or received a yoked saline infusion. Rats proceeded on an increasingly more difficult variable ratio schedule of lever pressing until they reached a variable ratio 5 schedule, which requires an average of 5 lever presses, and light and tone cues were delivered with the drug infusions. Rats were then tested for cocaine-seeking behavior in response to cue presentations without drug delivery either 1 or 21 days after their last self-administration session. They were sacrificed immediately after and circHomer1 and Homer1b expression was then measured from homogenate and synaptosomal fractions of NAc shell using RT-qPCR. Lever pressing during the cue reactivity test increased from 1 to 21 days of abstinence as expected. Results showed no group differences in synaptic circHomer1 expression, however, total circHomer1 expression was downregulated in 21d rats compared to controls. Lack of change in synaptic circHomer1 was likely due to trends toward different temporal changes in males versus females. Total Homer1b expression was higher in females, although there was no effect of cocaine abstinence. Further research investigating the time course of circHomer1 and Homer1b expression is warranted based on the inverse relationship between total circHomer1and cocaine-seeking behavior observed in this study.
ContributorsJohnson, Michael Christian (Author) / Neisewander, Janet L (Thesis advisor) / Perrone-Bizzozero, Nora (Thesis advisor) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
161274-Thumbnail Image.png
Description
Social insect groups, such as bees, termites, and ants, epitomize the emergence of group-level behaviors from the aggregated actions and interactions of individuals. Ants have the unique advantage that whole colonies can be observed in artificial, laboratory nests, and each individual's behavior can be continuously tracked using imaging software. In

Social insect groups, such as bees, termites, and ants, epitomize the emergence of group-level behaviors from the aggregated actions and interactions of individuals. Ants have the unique advantage that whole colonies can be observed in artificial, laboratory nests, and each individual's behavior can be continuously tracked using imaging software. In this dissertation, I study two group behaviors: (1) the spread of alarm signals from three agitated ants to a group of 61 quiescent nestmates, and (2) the reduction in per-capita energy use as colonies scale in size from tens of ants to thousands. For my first experiment, I track the motion of Pogonomyrmex californicus ants using an overhead camera, and I analyze how propagation of an initial alarm stimulus affects their walking speeds. I then build an agent-based model that simulates two-dimensional ant motion and the spread of the alarmed state. I find that implementing a simple set of rules for motion and alarm signal transmission reproduces the empirically observed speed dynamics. For the second experiment, I simulate social insect colony workers that collectively complete a set of tasks. By assuming that task switching is energetically costly, my model recovers a metabolic rate scaling pattern, known as hypometric metabolic scaling. This relationship, which predicts an organism's metabolic rate from its mass, is observed across a diverse set of social insect groups and animal species. The results suggest an explicit link between the degree of workers' task specialization and whole-colony energy use.
ContributorsLin, Michael Robert (Author) / Milner, Fabio A (Thesis advisor, Committee member) / Fewell, Jennifer H (Thesis advisor, Committee member) / Lampert, Adam (Committee member) / Arizona State University (Publisher)
Created2021
161960-Thumbnail Image.png
Description
In many social groups, reproduction is shared between group members, whocompete for position in the social hierarchy for reproductive dominance. This reproductive conflict can lead to different means of enforcing reproductive differences, such as dominance displays or limited control of social hierarchy through antagonistic encounters. In eusocial insects, archetypal colonies contain a single,

In many social groups, reproduction is shared between group members, whocompete for position in the social hierarchy for reproductive dominance. This reproductive conflict can lead to different means of enforcing reproductive differences, such as dominance displays or limited control of social hierarchy through antagonistic encounters. In eusocial insects, archetypal colonies contain a single, singly-mated fertile queen, such that no reproductive conflict exists within a colony. However, many eusocial insects deviate from this archetype and have multiply-mated queens (polyandry), multiple queens in a single colony (polygyny), or both. In these cases, reproductive conflict exists between the matrilines and patrilines represented in a colony, specifically over the production of sexual offspring. A possible outcome of reproductive conflict may be the emergence of cheating lineages, which favor the production of sexual offspring, taking advantage of the worker force produced by nestmate queens and/or patrilines. In extreme examples, inquiline social parasites may be an evolutionary consequence of reproductive conflict between nestmate queens. Inquiline social parasitism is a type of social parasitism that is usually defined by a partial or total loss of the worker caste, and the “infiltration” of host colonies to take advantage of the host worker force for reproduction. It has been hypothesized that these inquiline social parasites evolve through the speciation of cheating queen lineages from within their incipient host species. This “intra- specific” origin model involves a foundational hypothesis that the common ancestor of host and parasite (and thus, putatively, the host at the time of speciation) should be functionally polygynous, and that parasitism evolves as a “resolution” of reproductive conflict in colonies. In this dissertation, I investigate the hypothesized role of polygyny in the evolution of inquiline social parasites. I use molecular ecology and statistical approaches to validate the role of polygyny in the evolution of some inquiline social parasites. I further discuss potential mechanisms for the evolution and speciation of social parasites, and discuss future directions to elucidate these mechanisms.
ContributorsDahan, Romain Arvid (Author) / Rabeling, Christian (Thesis advisor) / Amdam, Gro V (Committee member) / Fewell, Jennifer H (Committee member) / Pratt, Stephen C (Committee member) / Rüppell, Olav (Committee member) / Arizona State University (Publisher)
Created2021
Description
The partitioning of photosynthates between their sites of production (source) and their sites of utilization (sink) is a major determinant of crop yield and the potential of regulating this translocation promises substantial opportunities for yield increases. Ubiquitous overexpression of the plant type I proton pyrophosphatase (H+-PPase) in crops improves several

The partitioning of photosynthates between their sites of production (source) and their sites of utilization (sink) is a major determinant of crop yield and the potential of regulating this translocation promises substantial opportunities for yield increases. Ubiquitous overexpression of the plant type I proton pyrophosphatase (H+-PPase) in crops improves several valuable traits including salt tolerance and drought resistance, nutrient and water use efficiencies, and increased root biomass and yield. Originally, type I H+-PPases were described as pyrophosphate (PPi)-dependent proton pumps localized exclusively in vacuoles of mesophyll and meristematic tissues. It has been proposed that in the meristematic tissues, the role of this enzyme would be hydrolyzing PPi originated in biosynthetic reactions and favoring sink strength. Interestingly, this enzyme has been also localized at the plasma membrane of companion cells in the phloem which load and transport photosynthates from source leaves to sinks. Of note, the plasma membrane-localized H+-PPase could only function as a PPi-synthase in these cells due to the steep proton gradient between the apoplast and cytosol. The generated PPi would favor active sucrose loading through the sucrose/proton symporter in the phloem by promoting sucrose hydrolysis through the Sucrose Synthase pathway and providing the ATP required to maintain the proton gradient. To better understand these two different roles of type I H+-PPases, a series of Arabidopsis thaliana transgenic plants were generated. By expressing soluble pyrophosphatases in companion cells of Col-0 ecotype and H+-PPase mutants, impaired photosynthates partitioning was observed, suggesting phloem-localized H+-PPase could generate the PPi required for sucrose loading. Col-0 plants expressed with either phloem- or meristem-specific AVP1 overexpression cassette and the cross between the two tissue specific lines (Cross) were generated. The results showed that the phloem-specific AVP1-overexpressing plants had increased root hair elongation under limited nutrient conditions and both phloem- and meristem-overexpression of AVP1 contributed to improved rhizosphere acidification and drought resistance. It was concluded that H+-PPases localized in both sink and source tissues regulate plant growth and performance under stress through its versatile enzymatic functions (PPi hydrolase and synthase).
ContributorsLi, Lin (Author) / Park, Yujin (Thesis advisor) / Mangone, Marco (Committee member) / Roberson, Robert (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2022
168823-Thumbnail Image.png
Description
Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are frequently overexpressed in human cancers, including GBM. Hence, over the

Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are frequently overexpressed in human cancers, including GBM. Hence, over the last decade there has been considerable interest in using HDAC inhibitors (HDACi) for the treatment of malignant primary brain tumors. However, to date most HDACi tested in clinical trials have failed to provide significant therapeutic benefit to patients with GBM. This is because current HDACi have poor or unknown pharmacokinetic profiles, lack selectivity towards the different HDAC isoforms, and have narrow therapeutic windows. Isoform selectivity for HDACi is important given that broad inhibition of all HDACs results in widespread toxicity across different organs. Moreover, the functional roles of individual HDAC isoforms in GBM are still not well understood. Here, I demonstrate that HDAC1 expression increases with brain tumor grade and is correlated with decreased survival in GBM. I find that HDAC1 is the essential HDAC isoform in glioma stem cells and its loss is not compensated for by its paralogue HDAC2 or other members of the HDAC family. Loss of HDAC1 alone has profound effects on the glioma stem cell phenotype in a p53-dependent manner and leads to significant suppression of tumor growth in vivo. While no HDAC isoform-selective inhibitors are currently available, the second-generation HDACi quisinostat harbors high specificity for HDAC1. I show that quisinostat exhibits potent growth inhibition in multiple patient-derived glioma stem cells. Using a pharmacokinetics- and pharmacodynamics-driven approach, I demonstrate that quisinostat is a brain-penetrant molecule that reduces tumor burden in flank and orthotopic models of GBM and significantly extends survival both alone and in combination with radiotherapy. The work presented in this thesis thereby unveils the non-redundant functions of HDAC1 in therapy- resistant glioma stem cells and identifies a brain-penetrant HDACi with higher selectivity towards HDAC1 as a potent radiosensitizer in preclinical models of GBM. Together, these results provide a rationale for developing quisinostat as a potential adjuvant therapy for the treatment of GBM.
ContributorsLo Cascio, Costanza (Author) / LaBaer, Joshua (Thesis advisor) / Mehta, Shwetal (Committee member) / Mirzadeh, Zaman (Committee member) / Mangone, Marco (Committee member) / Paek, Andrew (Committee member) / Arizona State University (Publisher)
Created2022