This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

156160-Thumbnail Image.png
Description
Endocrine disruptors are chemicals that interact with the hormone system to negative effect. They ‘disrupt’ normal processes to cause diseases like vaginal cancer and obesity, reproductive issues like t-shaped uteri and infertility, and developmental abnormalities like spina bifida and cleft palate. These chemicals are ubiquitous in our daily lives, components

Endocrine disruptors are chemicals that interact with the hormone system to negative effect. They ‘disrupt’ normal processes to cause diseases like vaginal cancer and obesity, reproductive issues like t-shaped uteri and infertility, and developmental abnormalities like spina bifida and cleft palate. These chemicals are ubiquitous in our daily lives, components in everything from toothpaste to microwave popcorn to plastic water bottles. My dissertation looks at the history, science, and regulation of these impactful substances in order to answer the question of how endocrine disruptors appeared, got interpreted by different groups, and what role science played in the process. My analysis reveals that endocrine disruptors followed a unique science policy trajectory in the US, rapidly going from their proposal in 1991 to their federal regulation in 1996, even amid intense and majority scientific disagreement over whether the substances existed at all. That trajectory resulted from the work of a small number of scientist-activists who constructed a concept and category as scientific, social, and regulatory. By playing actors from each sphere against each other and advancing a very specific scientific narrative that fit into a regulatory and social window of opportunity in the 1990s, those scientist-activists made endocrine disruptors a national issue that few could ignore. Those actions resulted in the Endocrine Disruptor Screening Program, a heavily-criticized and ineffective regulatory program. My dissertation tells a story of the past that informs the present. In 2018, the work of researchers, public media, and policymakers in the 1990s continues to play out, evident in the deep scientific division over endocrine disrupting effects and the inability of the European Union to settle on even a definition of endocrine disruptors for regulation purposes.
ContributorsAbboud, Alexis J (Author) / Maienschein, Jane A (Thesis advisor) / Crow, Michael M. (Committee member) / Hurlbut, J. Benjamin (Committee member) / Marchant, Gary E (Committee member) / Arizona State University (Publisher)
Created2018
156979-Thumbnail Image.png
Description
Salivary cortisol is the least invasive way in measuring hormonal response during exercise without interruption. In nationally ranked fencers (n=21), changes in cortisol were monitored by measurement of salivary cortisol sampled throughout different rounds of three North American Cup tournaments during the 2017-2018 United States fencing season. The changes were

Salivary cortisol is the least invasive way in measuring hormonal response during exercise without interruption. In nationally ranked fencers (n=21), changes in cortisol were monitored by measurement of salivary cortisol sampled throughout different rounds of three North American Cup tournaments during the 2017-2018 United States fencing season. The changes were also compared when looking at if a bout ended in a victory or defeat; the difference in rank between opponents; and the difference in score at the end of the bout. Immediately before the tournament cortisol levels were sampled, changes were in comparison to the initial sample as well as change from one bout to the next. The primary purpose of this study was to (a) compare how cortisol levels fluctuate during a tournament and (b) analyze cortisol levels to see if there is an optimal rage for performance. Eustress, “good stress” was considered optimal when the athletes were at peak performance. Here, peak performance means accomplishing the task, with the task being the bout ending in a victory. It was hypothesized that (a) cortisol levels would peak after a loss or stressful bout and (b) there would be an optimal range of cortisol for peak performance. This study supports the findings that cortisol peaks after a loss, and could point to optimal cortisol levels being more of an individualized range for each athlete. If these athletes can explicitly see just how their hormones rise and fall, then perhaps being more aware of these levels and being able to embrace them could lead to peak performance.
ContributorsVie, Jerica Nicole (Author) / Baluch, D. Page (Thesis advisor) / Sterner, Beckett (Committee member) / Cataldo, Donna (Committee member) / Arizona State University (Publisher)
Created2018
189328-Thumbnail Image.png
Description
Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation,

Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation, students need to be able to apply evolutionary principles to real-life situations, and accept that the theory of evolution is the best scientific explanation for the unity and diversity of life on Earth. In order to help students progress on both fronts, biology education researchers need surveys that measure evolution acceptance and assessments that measure students’ ability to apply evolutionary concepts. This dissertation improves the measurement of student understanding and acceptance of evolution by (1) developing a novel Evolutionary Medicine Assessment that measures students’ ability to apply the core principles of Evolutionary Medicine to a variety of health-related scenarios, (2) reevaluating existing measures of student evolution acceptance by using student interviews to assess response process validity, and (3) correcting the validity issues identified on the most widely-used measure of evolution acceptance - the Measure of Acceptance of the Theory of Evolution (MATE) - by developing and validating a revised version of this survey: the MATE 2.0.
ContributorsMisheva, Anastasia Taya (Author) / Brownell, Sara (Thesis advisor) / Barnes, Elizabeth (Committee member) / Collins, James (Committee member) / Cooper, Katelyn (Committee member) / Sterner, Beckett (Committee member) / Arizona State University (Publisher)
Created2023
161628-Thumbnail Image.png
Description
This dissertation investigates how ideas of the right relationships among science, the public, and collective decision-making about science and technology come to be envisioned in constructions of public engagement. In particular, it explores how public engagement has come to be constructed in discourse around gene editing to better understand how

This dissertation investigates how ideas of the right relationships among science, the public, and collective decision-making about science and technology come to be envisioned in constructions of public engagement. In particular, it explores how public engagement has come to be constructed in discourse around gene editing to better understand how it holds together with visions for good, democratic governance of those technologies and with what effects. Using a conceptual idiom of the co-production of science and the social order, I investigate the mutual formation of scientific expertise, responsibility, and democracy through constructions of public engagement. I begin by tracing dominant historical narratives of contemporary public engagement as a continuation of public understanding of science’s projects of social ordering for democratic society. I then analyze collections of prominent expert meetings, publications, discussions, and interventions about development, governance, and societal implications human heritable germline gene editing and gene drives that developed in tandem with commitments to public engagement around those technologies. Synthesizing the evidence from across gene editing discourse, I offer a constructive critique of constructions of public engagement as expressions and evidence of scientific responsibility as ultimately reasserting and reinforcing of scientific experts' authority in gene editing decision-making, despite intentions for public engagement to extend decision-making participation and power to publics. Such constructions of public engagement go unrecognized in gene editing discourse and thereby subtly reinforce broader visions of scientific expertise as essential to good governance by underwriting the legitimacy and authority of scientific experts to act on behalf of public interests. I further argue that the reinforcement of scientific expert authority in gene editing discourse through public engagement also centers scientific experts in a sociotechnical imaginary that I call “not for science alone.” This sociotechnical imaginary envisions scientific experts as guardians and guarantors of good, democratic governance. I then propose a possible alternatives to public engagement alone to improve gene editing governance by orienting discourse around notions of public accountability for potential shared benefits and collective harms of gene editing.
ContributorsRoss, Christian (Author) / Hurlbut, James B. (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Collins, James P. (Committee member) / Crow, Michael M. (Committee member) / Sarewitz, Daniel R. (Committee member) / Arizona State University (Publisher)
Created2021
168791-Thumbnail Image.png
Description
Increasingly, college courses have transitioned from traditional lecture to student-centered active learning, creating more opportunities for students to interact with each other in class. Recent studies have indicated that these increased interactions in active learning can create situations where students’ identities are more salient, which could result in novel challenges

Increasingly, college courses have transitioned from traditional lecture to student-centered active learning, creating more opportunities for students to interact with each other in class. Recent studies have indicated that these increased interactions in active learning can create situations where students’ identities are more salient, which could result in novel challenges for students with marginalized identities. Christianity has been shown to be a marginalized identity in the context of undergraduate biology courses, but it is unknown whether Christian students experience challenges in their interactions with other students in class. The social psychology framework of concealable stigmatized identity (CSI) was used to explore the experiences of Christian students during peer interactions in undergraduate biology courses. Thirty students were interviewed, and most felt their religious identity was salient during peer interactions in biology. Students also reported that they have more opportunities to reveal their religious identity in courses that incorporate peer discussion than in courses that do not. Students claimed that revealing their religious identity to their peers could be beneficial because they could find other religious students in their courses, grow closer with their peers, and combat stereotypes about religious individuals in science. Though most students anticipated stigma, which caused some students to choose not to reveal their religious identities, comparatively few had experienced stigma during peer interactions in their college biology courses, and even fewer had experienced stigma from peers who knew they were religious. These findings indicate that it be may important to teach students how to be culturally competent to reduce Christian students’ anticipated and experienced stigma in active learning courses.
ContributorsEdwards, Baylee Anne (Author) / Brownell, Sara E. (Thesis advisor) / Barnes, M. Elizabeth (Committee member) / Sterner, Beckett (Committee member) / Cooper, Katelyn M. (Committee member) / Arizona State University (Publisher)
Created2022