This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 12
Filtering by

Clear all filters

153136-Thumbnail Image.png
Description
Over the past two decades there has been much discussion surrounding the potential of zoos as conservation institutions. Although zoos have clearly intensified their rhetorical and programmatic commitment to conservation (both ex situ and in situ), many critics remain skeptical of these efforts. This study was comprised of two parts:

Over the past two decades there has been much discussion surrounding the potential of zoos as conservation institutions. Although zoos have clearly intensified their rhetorical and programmatic commitment to conservation (both ex situ and in situ), many critics remain skeptical of these efforts. This study was comprised of two parts: 1) an investigation of the general relationship between U.S. zoological institutions and the conservation agenda, and 2) a more specific single case study of conservation engagement and institutional identity at the Phoenix Zoo. Methods included extensive literature review, expert interviews with scholars and zoo professionals, site visits to the Phoenix Zoo and archival research. I found that the Phoenix Zoo is in the process of consciously creating a conservation-centered institutional identity by implementing and publicizing various conservation initiatives. Despite criticism of the embrace of conservation by zoos today, these institutions will be increasingly important agents of biodiversity protection and conservation education in this century.
ContributorsLove, Karen (Author) / Minteer, Ben (Thesis advisor) / Kinzig, Ann (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2014
156224-Thumbnail Image.png
Description
Evolution is the foundation of biology, yet it remains controversial even among college biology students. Acceptance of evolution is important for students if we want them to incorporate evolution into their scientific thinking. However, students’ religious beliefs are a consistent barrier to their acceptance of evolution due to a perceived

Evolution is the foundation of biology, yet it remains controversial even among college biology students. Acceptance of evolution is important for students if we want them to incorporate evolution into their scientific thinking. However, students’ religious beliefs are a consistent barrier to their acceptance of evolution due to a perceived conflict between religion and evolution. Using pre-post instructional surveys of students in introductory college biology, Study 1 establishes instructional strategies that can be effective for reducing students' perceived conflict between religion and evolution. Through interviews and qualitative analyses, Study 2 documents how instructors teaching evolution at public universities may be resistant towards implementing strategies that can reduce students' perceived conflict, perhaps because of their own lack of religious beliefs and lack of training and awareness about students' conflict with evolution. Interviews with religious students in Study 3 reveals that religious college biology students can perceive their instructors as unfriendly towards religion which can negatively impact these students' perceived conflict between religion and evolution. Study 4 explores how instructors at Christian universities, who share the same Christian backgrounds as their students, do not struggle with implementing strategies that reduce students' perceived conflict between religion and evolution. Cumulatively, these studies reveal a need for a new instructional framework for evolution education that takes into account the religious cultural difference between instructors who are teaching evolution and students who are learning evolution. As such, a new instructional framework is then described, Religious Cultural Competence in Evolution Education (ReCCEE), that can help instructors teach evolution in a way that can reduce students' perceived conflict between religion and evolution, increase student acceptance of evolution, and create more inclusive college biology classrooms for religious students.
ContributorsBarnes, Maryann Elizabeth (Author) / Brownell, Sara (Thesis advisor) / Nesse, Randolph (Committee member) / Collins, James (Committee member) / Husman, Jenefer (Committee member) / Maienschein, Jane (Committee member) / Arizona State University (Publisher)
Created2018
156388-Thumbnail Image.png
Description
The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance

The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance from a mutated protein; this process occurs when the MarR regulates an operon. We hypothesized that different transcriptional regulator genes have interactions with each other. It is known that Salmonella pagC transcription is activated by three regulators, i.e., SlyA, MprA, and PhoP. Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) system was used to research the protein-protein interactions in SlyA, MprA, and PhoP as heterodimers and homodimers in vivo. Two fragments, T25 and T18, that lack endogenous adenylate cyclase activity, were used for construction of chimeric proteins and reconstruction of adenylate cyclase activity was tested. The significant adenylate cyclase activities has proved that SlyA is able to form homodimers. However, weak adenylate cyclase activities in this study has proved that MprA and PhoP are not likely to form homodimers, and no protein-protein interactions were detected in between SlyA, MprA and PhoP, which no heterodimers have formed in between three transcriptional regulators.
ContributorsTao, Zenan (Author) / Shi, Yixin (Thesis advisor) / Wang, Xuan (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2018
156452-Thumbnail Image.png
Description
Guided by Tinto’s Theory of College Student Departure, I conducted a set of five studies to identify factors that influence students’ social integration in college science active learning classes. These studies were conducted in large-enrollment college science courses and some were specifically conducted in undergraduate active learning biology courses.

Guided by Tinto’s Theory of College Student Departure, I conducted a set of five studies to identify factors that influence students’ social integration in college science active learning classes. These studies were conducted in large-enrollment college science courses and some were specifically conducted in undergraduate active learning biology courses. Using qualitative and quantitative methodologies, I identified how students’ identities, such as their gender and LGBTQIA identity, and students’ perceptions of their own intelligence influence their experience in active learning science classes and consequently their social integration in college. I also determined factors of active learning classrooms and instructor behaviors that can affect whether students experience positive or negative social integration in the context of active learning. I found that students’ hidden identities, such as the LGBTQIA identity, are more relevant in active learning classes where students work together and that the increased relevance of one’s identity can have a positive and negative impact on their social integration. I also found that students’ identities can predict their academic self-concept, or their perception of their intelligence as it compares to others’ intelligence in biology, which in turn predicts their participation in small group-discussion. While many students express a fear of negative evaluation, or dread being evaluated negatively by others when speaking out in active learning classes, I identified that how instructors structure group work can cause students to feel more or less integrated into the college science classroom. Lastly, I identified tools that instructors can use, such as name tents and humor, which can positive affect students’ social integration into the college science classroom. In sum, I highlight inequities in students’ experiences in active learning science classrooms and the mechanisms that underlie some of these inequities. I hope this work can be used to create more inclusive undergraduate active learning science courses.
ContributorsCooper, Katelyn M (Author) / Brownell, Sara E (Thesis advisor) / Stout, Valerie (Committee member) / Collins, James (Committee member) / Orchinik, Miles (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2018
154808-Thumbnail Image.png
Description
The complex life cycle and widespread range of infection of Plasmodium parasites, the causal agent of malaria in humans, makes them the perfect organism for the study of various evolutionary mechanisms. In particular, multigene families are considered one of the main sources for genome adaptability and innovation. Within Plasmodium, numerous

The complex life cycle and widespread range of infection of Plasmodium parasites, the causal agent of malaria in humans, makes them the perfect organism for the study of various evolutionary mechanisms. In particular, multigene families are considered one of the main sources for genome adaptability and innovation. Within Plasmodium, numerous species- and clade-specific multigene families have major functions in the development and maintenance of infection. Nonetheless, while the evolutionary mechanisms predominant on many species- and clade-specific multigene families have been previously studied, there are far less studies dedicated to analyzing genus common multigene families (GCMFs). I studied the patterns of natural selection and recombination in 90 GCMFs with diverse numbers of gene gain/loss events. I found that the majority of GCMFs are formed by duplications events that predate speciation of mammal Plasmodium species, with many paralogs being neutrally maintained thereafter. In general, multigene families involved in immune evasion and host cell invasion commonly showed signs of positive selection and species-specific gain/loss events; particularly, on Plasmodium species is the simian and rodent clades. A particular multigene family: the merozoite surface protein-7 (msp7) family, is found in all Plasmodium species and has functions related to the erythrocyte invasion. Within Plasmodium vivax, differences in the number of paralogs in this multigene family has been previously explained, at least in part, as potential adaptations to the human host. To investigate this I studied msp7 orthologs in closely related non-human primate parasites where homology was evident. I also estimated paralogs’ evolutionary history and genetic polymorphism. The emerging patterns where compared with those of Plasmodium falciparum. I found that the evolution of the msp7 multigene family is consistent with a Birth-and-Death model where duplications, pseudogenization and gene lost events are common. In order to study additional aspects in the evolution of Plasmodium, I evaluated the trends of long term and short term evolution and the putative effects of vertebrate- host’s immune pressure of gametocytes across various Plasmodium species. Gametocytes, represent the only sexual stage within the Plasmodium life cycle, and are also the transition stages from the vertebrate to the mosquito vector. I found that, while male and female gametocytes showed different levels of immunogenicity, signs of positive selection were not entirely related to the location and presence of immune epitope regions. Overall, these studies further highlight the complex evolutionary patterns observed in Plasmodium.
ContributorsCastillo Siri, Andreina I (Author) / Rosenberg, Michael (Thesis advisor) / Escalante, Ananias (Committee member) / Taylor, Jesse (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2016
154836-Thumbnail Image.png
Description
Emergence of multidrug resistant (MDR) bacteria is a major concern to global health. One of the major MDR mechanisms bacteria employ is efflux pumps for the expulsion of drugs from the cell. In Escherichia coli, AcrAB-TolC proteins constitute the major chromosomally-encoded drug efflux system. AcrB, a trimeric membrane protein is

Emergence of multidrug resistant (MDR) bacteria is a major concern to global health. One of the major MDR mechanisms bacteria employ is efflux pumps for the expulsion of drugs from the cell. In Escherichia coli, AcrAB-TolC proteins constitute the major chromosomally-encoded drug efflux system. AcrB, a trimeric membrane protein is well-known for its substrate promiscuity. It has the ability to efflux a broad spectrum of substrates alongside compounds such as dyes, detergent, bile salts and metabolites. Newly identified AcrB residues were shown to be functionally relevant in the drug binding and translocation pathway using a positive genetic selection strategy. These residues—Y49, V127, D153, G288, F453, and L486—were identified as the sites of suppressors of an alteration, F610A, that confers a drug hypersensitivity phenotype. Using site-directed mutagenesis (SDM) along with the real-time efflux and the classical minimum inhibitory concentration (MIC) assays, I was able to characterize the mechanism of suppression.

Three approaches were used for the characterization of these suppressors. The first approach focused on side chain specificity. The results showed that certain suppressor sites prefer a particular side chain property, such as size, to overcome the F610A defect. The second approach focused on the effects of efflux pump inhibitors. The results showed that though the suppressor residues were able to overcome the intrinsic defect of F610A, they were unable to overcome the extrinsic defect caused by the efflux pump inhibitors. This showed that the mechanism by which F610A imposes its effect on AcrB function is different than that of the efflux pump inhibitors. The final approach was to determine whether suppressors mapping in the periplasmic and trans-membrane domains act by the same or different mechanisms. The results showed both overlapping and distinct mechanisms of suppression.

To conclude, these approaches have provided a deeper understanding of the mechanisms by which novel suppressor residues of AcrB overcome the functional defect of the drug binding domain alteration, F610A.
ContributorsBlake, Mellecha (Author) / Misra, Rajeev (Thesis advisor) / Stout, Valerie (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
154874-Thumbnail Image.png
Description
The closer integration of the world economy has yielded many positive benefits including the worldwide diffusion of innovative technologies and efficiency gains following the widening of international markets. However, closer integration also has negative consequences. Specifically, I focus on the ecology and economics of the spread of species

The closer integration of the world economy has yielded many positive benefits including the worldwide diffusion of innovative technologies and efficiency gains following the widening of international markets. However, closer integration also has negative consequences. Specifically, I focus on the ecology and economics of the spread of species and pathogens. I approach the problem using theoretical and applied models in ecology and economics. First, I use a multi-species theoretical network model to evaluate the ability of dispersal to maintain system-level biodiversity and productivity. I then extend this analysis to consider the effects of dispersal in a coupled social-ecological system where people derive benefits from species. Finally, I estimate an empirical model of the foot and mouth disease risks of trade. By combining outbreak and trade data I estimate the disease risks associated with the international trade in live animals while controlling for the biosecurity measures in place in importing countries and the presence of wild reservoirs. I find that the risks associated with the spread and dispersal of species may be positive or negative, but that this relationship depends on the ecological and economic components of the system and the interactions between them.
ContributorsShanafelt, David William (Author) / Perrings, Charles (Thesis advisor) / Fenichel, Eli (Committee member) / Richards, Timorthy (Committee member) / Janssen, Marco (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2016
189328-Thumbnail Image.png
Description
Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation,

Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation, students need to be able to apply evolutionary principles to real-life situations, and accept that the theory of evolution is the best scientific explanation for the unity and diversity of life on Earth. In order to help students progress on both fronts, biology education researchers need surveys that measure evolution acceptance and assessments that measure students’ ability to apply evolutionary concepts. This dissertation improves the measurement of student understanding and acceptance of evolution by (1) developing a novel Evolutionary Medicine Assessment that measures students’ ability to apply the core principles of Evolutionary Medicine to a variety of health-related scenarios, (2) reevaluating existing measures of student evolution acceptance by using student interviews to assess response process validity, and (3) correcting the validity issues identified on the most widely-used measure of evolution acceptance - the Measure of Acceptance of the Theory of Evolution (MATE) - by developing and validating a revised version of this survey: the MATE 2.0.
ContributorsMisheva, Anastasia Taya (Author) / Brownell, Sara (Thesis advisor) / Barnes, Elizabeth (Committee member) / Collins, James (Committee member) / Cooper, Katelyn (Committee member) / Sterner, Beckett (Committee member) / Arizona State University (Publisher)
Created2023
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
171685-Thumbnail Image.png
Description
Insecticide resistance is a continuing issue that negatively affects both public health and agriculture and allows vector-borne diseases to spread throughout the globe. To improve resistance management strategies (RMS), robust susceptibility bioassays need to be performed in order to fill the gap of the relationship between resistant and susceptible genotype

Insecticide resistance is a continuing issue that negatively affects both public health and agriculture and allows vector-borne diseases to spread throughout the globe. To improve resistance management strategies (RMS), robust susceptibility bioassays need to be performed in order to fill the gap of the relationship between resistant and susceptible genotype and phenotype, and a deeper knowledge of how bioassay data relates to vector control success or failure is imperative. A bioassay method that is infrequently used but yields robust results is the topical application bioassay, where the insect is directly treated with a constant volume and concentration of an insecticide via a syringe. To bring more attention to this method, my colleagues and I published a paper in the Journal of Visualized Experiments where the optimized protocol of the topical application bioassay for mosquitoes and fruit flies is described, and the strengths and limitations to the method are explained. To further investigate insecticide susceptibility tests, I set up my individual project where I used Aedes aegypti mosquitoes to compare the topical application bioassay to the commonly used Centers for Disease Control and Prevention (CDC) bottle bioassay and World Health Organization (WHO) tube test. The objective of this study was to test which method exhibited the most variability in mortality results, which would guide the choice of assay to determine the link between resistant and susceptible genotype and phenotype. The results showed that the topical application method did indeed exhibit the least amount of variation, followed by the CDC bottle bioassay (WHO data is currently being collected). This suggests that the topical application bioassay could be a useful tool in insecticide resistance surveillance studies, and, depending on the goal, may be better than the CDC and WHO tube tests for assessing resistance levels at a given site. This study challenges the value of the widely used CDC and WHO assays and provides a discussion on the importance of technical and practical resistance assays. This will help vector control specialists to collect accurate surveillance data that will inform effective RMS.
ContributorsAlthoff, Rachel (Author) / Huijben, Silvie (Thesis advisor) / Harris, Robin (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2022