This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

156422-Thumbnail Image.png
Description
Aboveground net primary production (ANPP) and belowground net primary production (BNPP) may not be influenced equally by the same factors in arid grasslands. Precipitation is known to affect ANPP and BNPP, while soil fauna such as nematodes affect the BNPP through herbivory and predation. This study on black grama grass

Aboveground net primary production (ANPP) and belowground net primary production (BNPP) may not be influenced equally by the same factors in arid grasslands. Precipitation is known to affect ANPP and BNPP, while soil fauna such as nematodes affect the BNPP through herbivory and predation. This study on black grama grass (Bouteloua eriopoda) in the Chihuahuan Desert investigates the effects of precipitation and nematode presence or absence on net primary production (NPP) as well as the partitioning between the aboveground and belowground components, in this case, the fraction of total net primary production occurring belowground (fBNPP). I used a factorial experiment to investigate the effects of both precipitation and nematode presence on the components of NPP. I used rainout shelters and an irrigation system to alter precipitation totals, while I used defaunated and re-inoculated soil for the nematode treatments. Precipitation treatment and seasonal soil moisture had no effect on the BNPP and a nonsignificant positive effect on the ANPP. The fBNPP decreased with increasing precipitation and seasonal soil moisture, though without a significant effect. No predator nematodes were found in any of the microcosms at the end of the experiment, though other functional groups of nematodes, including herbivores, were found in the microcosms. Total nematode numbers did not vary significantly between nematode treatments, indicating that the inoculation process did not last for the whole experiment or that nematodes had little plant material to eat and resulted in low population density. Nematode presence did not affect the BNPP, ANPP, or the fBNPP. There were no significant interactions between precipitation and nematode treatment. The results are inconclusive, possibly as a result of ecosystem trends during an unusually high precipitation year, as well as the very low NPP values in the experiment that correlated with low nematode community numbers.
ContributorsWiedenfeld, Amy (Author) / Sala, Osvaldo (Thesis advisor) / Gerber, Leah (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2018
156926-Thumbnail Image.png
Description
Understanding changes and trends in biomedical knowledge is crucial for individuals, groups, and institutions as biomedicine improves people’s lives, supports national economies, and facilitates innovation. However, as knowledge changes what evidence illustrates knowledge changes? In the case of microbiome, a multi-dimensional concept from biomedicine, there are significant increases in publications,

Understanding changes and trends in biomedical knowledge is crucial for individuals, groups, and institutions as biomedicine improves people’s lives, supports national economies, and facilitates innovation. However, as knowledge changes what evidence illustrates knowledge changes? In the case of microbiome, a multi-dimensional concept from biomedicine, there are significant increases in publications, citations, funding, collaborations, and other explanatory variables or contextual factors. What is observed in the microbiome, or any historical evolution of a scientific field or scientific knowledge, is that these changes are related to changes in knowledge, but what is not understood is how to measure and track changes in knowledge. This investigation highlights how contextual factors from the language and social context of the microbiome are related to changes in the usage, meaning, and scientific knowledge on the microbiome. Two interconnected studies integrating qualitative and quantitative evidence examine the variation and change of the microbiome evidence are presented. First, the concepts microbiome, metagenome, and metabolome are compared to determine the boundaries of the microbiome concept in relation to other concepts where the conceptual boundaries have been cited as overlapping. A collection of publications for each concept or corpus is presented, with a focus on how to create, collect, curate, and analyze large data collections. This study concludes with suggestions on how to analyze biomedical concepts using a hybrid approach that combines results from the larger language context and individual words. Second, the results of a systematic review that describes the variation and change of microbiome research, funding, and knowledge are examined. A corpus of approximately 28,000 articles on the microbiome are characterized, and a spectrum of microbiome interpretations are suggested based on differences related to context. The collective results suggest the microbiome is a separate concept from the metagenome and metabolome, and the variation and change to the microbiome concept was influenced by contextual factors. These results provide insight into how concepts with extensive resources behave within biomedicine and suggest the microbiome is possibly representative of conceptual change or a preview of new dynamics within science that are expected in the future.
ContributorsAiello, Kenneth (Author) / Laubichler, Manfred D (Thesis advisor) / Simeone, Michael (Committee member) / Buetow, Kenneth (Committee member) / Walker, Sara I (Committee member) / Arizona State University (Publisher)
Created2018
157106-Thumbnail Image.png
Description
In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting

In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting and is an evolutionary paradox. The best explanation for imprinting is David Haig's kinship theory, which hypothesizes that monoallelic gene expression is largely the result of evolutionary conflict between males and females over maternal involvement in their offspring. One previous RNAseq study has investigated the presence of parent-of-origin effects, or imprinting, in the parasitic jewel wasp Nasonia vitripennis (N. vitripennis) and its sister species Nasonia giraulti (N. giraulti) to test the predictions of kinship theory in a non-eusocial species for comparison to a eusocial one. In order to continue to tease apart the connection between social and eusocial Hymenoptera, this study proposed a similar RNAseq study that attempted to reproduce these results in unique samples of reciprocal F1 Nasonia hybrids. Building a pseudo N. giraulti reference genome, differences were observed when aligning RNAseq reads to a N. vitripennis reference genome compared to aligning reads to a pseudo N. giraulti reference. As well, no evidence for parent-of-origin or imprinting patterns in adult Nasonia were found. These results demonstrated a species-of-origin effect. Importantly, the study continued to build a repository of support with the aim to elucidate the mechanisms behind imprinting in an excellent epigenetic model species, as it can also help with understanding the phenomenon of imprinting in complex human diseases.
ContributorsUnderwood, Avery Elizabeth (Author) / Wilson, Melissa (Thesis advisor) / Buetow, Kenneth (Committee member) / Gile, Gillian (Committee member) / Arizona State University (Publisher)
Created2019
191702-Thumbnail Image.png
Description
Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is

Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is through the reduction of the mosquito vector population size and/or reducing vector-human contact using insecticides. Frontline tools in malaria (an MBD caused by a parasite) control and elimination have been drugs (targeting the malaria parasite) and insecticides (targeting the vectors) through indoor residual spraying (IRS) (spraying the internal walls and sometimes the roofs of dwellings with residual insecticides to kill adult mosquito vectors), and long-lasting insecticidal nets (LLINs), while arboviral vectors are frequently targeted using outdoor fogging and space spraying (indoor or outdoor spraying of insecticides to kill adult mosquito vectors). Integrative and novel vector control efforts are urgently needed since the aforementioned tools may not be as effective against those mosquito species that are resistant to insecticides and/or have a different (or changed) behavior allowing them to avoid existing tools. In Chapters 2 and 3, I investigate mosquito vector surveillance in Arizona by (i) discussing the species composition and public health implications of the State’s mosquito fauna, and (ii) comparing the effectiveness of 4 different carbon dioxide (CO2) sources in attracting different mosquito species on the Arizona State University Tempe Campus. In Chapters 4 and 5, I investigate a novel vector control tool by (i) completing a literature review on using electric fields (EFs) to control insects, and (ii) presenting novel data on using Insulated Conductor Wires (ICWs) to generate EFs that prevent host-seeking female Aedes aegypti from entering spaces. In Chapter 6, I discuss the non-target effects of chemical malaria control on other arthropods, including other biological and mechanical infectious disease vectors. Overall, this dissertation highlights the important role that the development of novel surveillance and vector control tools could play in improved mosquito control, which ultimately will reduce disease morbidity and mortality.
ContributorsJobe, Ndey Bassin (Author) / Paaijmans, Krijn (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Huijben, Silvie (Committee member) / Arizona State University (Publisher)
Created2024
187448-Thumbnail Image.png
Description
Evolutionary theory provides a rich framework for understanding cancer dynamics across scales of biological organization. The field of cancer evolution has largely been divided into two domains, comparative oncology - the study of cancer across the tree of life, and tumor evolution. This work provides a theoretical framework to unify

Evolutionary theory provides a rich framework for understanding cancer dynamics across scales of biological organization. The field of cancer evolution has largely been divided into two domains, comparative oncology - the study of cancer across the tree of life, and tumor evolution. This work provides a theoretical framework to unify these subfields with the intent that an understanding of the evolutionary dynamics driving cancer risk at one scale can inform the understanding of the dynamics on another scale. The evolution of multicellular life and the unique vulnerabilities in the cellular mechanisms that underpin it explain the ubiquity of cancer prevalence across the tree of life. The breakdown in cellular cooperation and communication that were required for multicellular life define the hallmarks of cancer. As divergent life histories drove speciation events, it similarly drove divergences in fundamental cancer risk across species. An understanding of the impact that species’ life history theory has on the underlying network of multicellular cooperation and somatic evolution allows for robust predictions on cross-species cancer risk. A large-scale veterinary cancer database is utilized to validate many of the predictions on cancer risk made from life history evolution. Changing scales to the cellular level, it lays predictions on the fate of somatic mutations and the fitness benefits they confer to neoplastic cells compared to their healthy counterparts. The cancer hallmarks, far more than just a way to unify the many seemingly unique pathologies defined as cancer, is a powerful toolset to understand how specific mutations may change the fitness of somatic cells throughout carcinogenesis and tumor progression. Alongside highlighting the significant advances in evolutionary approaches to cancer across scales, this work provides a lucid confirmation that an understanding of both scales provides the most complete portrait of evolutionary cancer dynamics.
ContributorsCompton, Zachary Taylor (Author) / Maley, Carlo C. (Thesis advisor) / Aktipis, Athena (Committee member) / Buetow, Kenneth (Committee member) / Nedelcu, Aurora (Committee member) / Compton, Carolyn (Committee member) / Arizona State University (Publisher)
Created2023
158570-Thumbnail Image.png
Description
Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic

Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic drivers such as photodegradation are commonly perceived to be more important. I assessed the significance of microbes to the decay of plant litter in the Sonoran Desert. I found that the variation in decay among 16 leaf litter types was correlated with microbial respiration rates (i.e. CO2 emission) from litter, and rates were strongly correlated with water-vapor sorption rates of litter. Water-vapor sorption during high-humidity periods activates microbes and subsequent respiration appears to be a significant decay mechanism. I also found that exposure to sunlight accelerated litter decay (i.e. photodegradation) and enhanced subsequent respiration rates of litter. The abundance of bacteria (but not fungi) on the surface of litter exposed to sunlight was strongly correlated with respiration rates, as well as litter decay, implying that exposure to sunlight facilitated activity of surface bacteria which were responsible for faster decay. I also assessed the response of respiration to temperature and moisture content (MC) of litter, as well as the relationship between relative humidity and MC. There was a peak in respiration rates between 35-40oC, and, unexpectedly, rates increased from 55 to 70oC with the highest peak at 70oC, suggesting the presence of thermophilic microbes or heat-tolerant enzymes. Respiration rates increased exponentially with MC, and MC was strongly correlated with relative humidity. I used these relationships, along with litter microclimate and C loss data to estimate the contribution of this pathway to litter C loss over 34 months. Respiration was responsible for 24% of the total C lost from litter – this represents a substantial pathway for C loss, over twice as large as the combination of thermal and photochemical abiotic emission. My findings elucidate two mechanisms that explain why microbial drivers were more significant than commonly assumed: activation of microbes via water-vapor sorption and high respiration rates at high temperatures.
ContributorsTomes, Alexander (Author) / Day, Thomas (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Ball, Becky (Committee member) / Hall, Sharon (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2020