This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 11
Filtering by

Clear all filters

153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
156042-Thumbnail Image.png
Description
The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial

The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial proteins expressed in human cell lines, yet they exhibit an organizing principle: that genes and proteins may be treated as modular units that can be moved from their native organism to a novel one. However, protein behavior is always unpredictable; drop-in functionality is not guaranteed.

My work characterizes how two different classes of tools behave in new contexts and explores methods to improve their functionality: 1. CRISPR/Cas9 in human cells and 2. quorum sensing networks in Escherichia coli.

1. The genome-editing tool CRISPR/Cas9 has facilitated easily targeted, effective, high throughput genome editing. However, Cas9 is a bacterially derived protein and its behavior in the complex microenvironment of the eukaryotic nucleus is not well understood. Using transgenic human cell lines, I found that gene-silencing heterochromatin impacts Cas9’s ability to bind and cut DNA in a site-specific manner and I investigated ways to improve CRISPR/Cas9 function in heterochromatin.

2. Bacteria use quorum sensing to monitor population density and regulate group behaviors such as virulence, motility, and biofilm formation. Homoserine lactone (HSL) quorum sensing networks are of particular interest to synthetic biologists because they can function as “wires” to connect multiple genetic circuits. However, only four of these networks have been widely implemented in engineered systems. I selected ten quorum sensing networks based on their HSL production profiles and confirmed their functionality in E. coli, significantly expanding the quorum sensing toolset available to synthetic biologists.
ContributorsDaer, René (Author) / Haynes, Karmella (Thesis advisor) / Brafman, David (Committee member) / Nielsen, David (Committee member) / Kiani, Samira (Committee member) / Arizona State University (Publisher)
Created2017
155857-Thumbnail Image.png
Description
Synthetic gene networks have evolved from simple proof-of-concept circuits to

complex therapy-oriented networks over the past fifteen years. This advancement has

greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a

mechanism that cells use to achieve a discrete number of mutually exclusive states in

response to environmental inputs. However, complex

Synthetic gene networks have evolved from simple proof-of-concept circuits to

complex therapy-oriented networks over the past fifteen years. This advancement has

greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a

mechanism that cells use to achieve a discrete number of mutually exclusive states in

response to environmental inputs. However, complex contextual connections of gene

regulatory networks in natural settings often impede the experimental establishment of

the function and dynamics of each specific gene network.

In this work, diverse synthetic gene networks are rationally designed and

constructed using well-characterized biological components to approach the cell fate

determination and state transition dynamics in multistable systems. Results show that

unimodality and bimodality and trimodality can be achieved through manipulation of the

signal and promoter crosstalk in quorum-sensing systems, which enables bacterial cells to

communicate with each other.

Moreover, a synthetic quadrastable circuit is also built and experimentally

demonstrated to have four stable steady states. Experiments, guided by mathematical

modeling predictions, reveal that sequential inductions generate distinct cell fates by

changing the landscape in sequence and hence navigating cells to different final states.

Circuit function depends on the specific protein expression levels in the circuit.

We then establish a protein expression predictor taking into account adjacent

transcriptional regions’ features through construction of ~120 synthetic gene circuits

(operons) in Escherichia coli. The predictor’s utility is further demonstrated in evaluating genes’ relative expression levels in construction of logic gates and tuning gene expressions and nonlinear dynamics of bistable gene networks.

These combined results illustrate applications of synthetic gene networks to

understand the cell fate determination and state transition dynamics in multistable

systems. A protein-expression predictor is also developed to evaluate and tune circuit

dynamics.
ContributorsWu, Fuqing (Author) / Wang, Xiao (Thesis advisor) / Haynes, Karmella (Committee member) / Marshall, Pamela (Committee member) / Nielsen, David (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2017
Description
Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of

Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of biomimicry and structural complexity of 2D models. As such, there is a critical need to develop a 3D, biomimetic human cardiac tissue within precisely engineered in vitro platforms. This PhD dissertation involved development of an innovative anisotropic 3D human stem cell-derived cardiac tissue on-a-chip model (i.e., heart on-a-chip), with an enhanced maturation tissue state, as demonstrated through extensive biological assessments. To demonstrate the potential of the platform to study cardiac-specific diseases, the developed heart on-a-chip was used to model myocardial infarction (MI) due to exposure to hypoxia. The successful induction of MI on-a-chip (heart attack-on-a-chip) was evidenced through fibrotic tissue response, contractile dysregulation, and transcriptomic regulation of key pathways.This dissertation also described incorporation of CRISPR/Cas9 gene-editing to create a human induced pluripotent stem cell line (hiPSC) with a mutation in KCNH2, the gene implicated in Long QT Syndrome Type 2 (LQTS2). This novel stem cell line, combined with the developed heart on-a-chip technology, led to creation of a 3D human cardiac on-chip tissue model of LQTS2 disease.. Extensive mechanistic biological and electrophysiological characterizations were performed to elucidate the mechanism of R531W mutation in KCNH2, significantly adding to existing knowledge about LQTS2. In summary, this thesis described creation of a LQTS2 cardiac on-a-chip model, incorporated with gene-edited hiPSC-cardiomyocytes and hiPSC-cardiac fibroblasts, to study mechanisms of LQTS2. Overall, this dissertation provides broad impact for fundamental studies toward cardiac biological studies as well as drug screening applications. Specifically, the developed heart on-a-chip from this dissertation provides a unique alternative platform to animal testing and 2D studies that recapitulates the human myocardium, with capabilities to model critical CVDs to study disease mechanisms, and/or ultimately lead to development of future therapeutic strategies.
ContributorsVeldhuizen, Jaimeson (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Ebrahimkhani, Mo (Committee member) / Migrino, Raymond Q (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2021
187818-Thumbnail Image.png
Description
Male reproductive dysfunction accounts for almost half of male infertility cases, yet the signaling mechanisms involved in the male reproductive system remain unclear. Although the exact cause of male reproductive dysfunction varies, obtaining a better understanding of the modulators of smooth muscle contractions may provide new targets for the treatment

Male reproductive dysfunction accounts for almost half of male infertility cases, yet the signaling mechanisms involved in the male reproductive system remain unclear. Although the exact cause of male reproductive dysfunction varies, obtaining a better understanding of the modulators of smooth muscle contractions may provide new targets for the treatment of male reproductive conditions. The male reproductive tract, consisting of the testes, epididymis, vas deferens, and penis, is lined with innervated smooth muscle fibers that transport spermatozoa through the system. Contractions of these smooth muscle fibers can be modulated by neurotransmitters and hormones, like dopamine and norepinephrine, as well as biogenic amines. The focus of this study is on the biogenic amine tyramine, which is produced by the breakdown of tyrosine via decarboxylation. Tyramine has been shown to modulate vasoconstriction and increase blood pressure due to its effect on smooth muscle contractions. This study has found that tyramine localizes in male reproductive tissues and modulates smooth muscle contractions. Age and environment were also found to play a significant role in the expression of tyramine and its associated receptor, TAAR1.
ContributorsSteadman, Solange (Author) / Baluch, Debra (Thesis advisor) / Roberson, Robert (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2023
187535-Thumbnail Image.png
Description
Human preterm labor is the single most significant issue in modern obstetrics andgynecology, affecting ten percent of pregnancies, constituting the leading cause of infant death, and contributing significantly to chronic childhood disease. Obstetricians and reproductive scientists are faced with the major challenge of trying to increase the understanding of the

Human preterm labor is the single most significant issue in modern obstetrics andgynecology, affecting ten percent of pregnancies, constituting the leading cause of infant death, and contributing significantly to chronic childhood disease. Obstetricians and reproductive scientists are faced with the major challenge of trying to increase the understanding of the complex molecular and cellular signals that regulate uterine activity during human pregnancy and labor. Even though preterm labor accounts for a large portion of perinatal mortality and morbidity, there still is not an effective therapeutic strategy for the treatment or prevention of preterm labor. This dissertation presents tyramine as an alternative modulator of uterine activity. In this dissertation the aims were as follows: 1) to investigate the localization of tyramine and trace amine associated receptor 1 (TAAR1) in the mouse uterine horn using immunohistochemistry as well as confirm the presence of tyramine in the uterine tissue using high performance liquid chromatography, 2) identify which TAAR 1-9 subtypes were present in the mouse uterine horn using RT-qPCR, 3) investigate ultrastructural differences in the mouse uterine horn following tyramine and dopamine treatment using transmission electron microscopy and 4) investigate pinopod ultrastructure as well as pinopod ultrastructural differences following tyramine and dopamine treatment. The research presented in this dissertation showed: 1) tyramine has very specific localization in the mouse endometrium, mainly in the uterine glands, TAAR1 is localized all throughout the perimetrium, myometrium and endometrium, and that tyramine was confirmed and quantified using HPLC, 2) TAAR 1- 9 genes are expressed in trace levels in the mouse uterine horn, 3) tyramine influences changes in endometrial ultrastructure, and 4) tyramine influences changes in pinopod ultrastructure. Ultimately these findings can help with identifying novel treatment options not only for spontaneous preterm labor contractions but also for other uterine related disorders.
ContributorsObayomi, SM Bukola (Author) / Baluch, Debra P (Thesis advisor) / Roberson, Robert (Thesis advisor) / Sweazea, Karen (Committee member) / Brent, Colin (Committee member) / Arizona State University (Publisher)
Created2023
161735-Thumbnail Image.png
Description
Lipolysis or hydrolysis of triglyceride (TG) stored within intracellular lipid droplets (LD), is vital to maintaining metabolic homeostasis in mammals. Regulation of lipolysis and subsequent utilization of liberated fatty acids impacts cellular and organismal functions including body fat accumulation and thermogenesis. Adipose triglyceride lipase (ATGL) is the intracellular rate-limiting enzyme

Lipolysis or hydrolysis of triglyceride (TG) stored within intracellular lipid droplets (LD), is vital to maintaining metabolic homeostasis in mammals. Regulation of lipolysis and subsequent utilization of liberated fatty acids impacts cellular and organismal functions including body fat accumulation and thermogenesis. Adipose triglyceride lipase (ATGL) is the intracellular rate-limiting enzyme responsible for catalyzing hydrolysis of TG to diacylglycerol (DAG), the initial step of the lipolytic reaction. G0/G1 switch gene-2 (G0S2) and hypoxia-inducible gene-2 (HIG2) are selective inhibitors of ATGL. G0S2 facilitates accumulation of TG in the liver and adipose tissue, while HIG2 functions under hypoxic conditions. Sequence analysis and mutagenesis were used to confirm the presence of conserved domains between these proteins, and that these domains are required for efficient binding and inhibition of ATGL. Further analysis revealed a Positive sequence (Pos-Seq)-LD binding motif in G0S2 but not HIG2. The Pos-Seq mediated ATGL-independent localization to LD and was required for achieving maximal inhibition of ATGL activity by G0S2. Identification and mutational analysis of this motif revealed distinct mechanisms for HIG2 and G0S2 LD association. In addition to molecular characterization of known protein inhibitors of lipolysis, an intracellular member of the apolipoprotein L (ApoL) family, ApoL6, was also identified as a LD and mitochondria associated protein expressed in adipose tissue. Brown adipose tissue uses fatty acids as fuel for increasing its energy output as heat during acute responses to cold exposure. A Comprehensive Lab Animal Monitoring System was used to compare heat production at room temperature (RT) and 4oC in transgenic animals overexpressing ApoL6 in brown adipose tissue. Overexpression of ApoL6 delayed utilization of long-chain fatty acids (LCFAs) as a fuel source while promoting an enhanced thermogenic response during initial cold exposure. ApoL6 mediated inhibition of LCFA utilization results from binding of ApoL6 to Mitochondrial Trifunctional Protein (MTP/TFP), which catalyzes mitochondrial β-oxidation. Indirect calorimetry and fasting acute cold exposure experiments suggest the augmented thermogenic profile of ApoL6 transgenic animals is a result of enhanced utilization of medium-chain fatty acids (MCFAs), glucose, and amino acids as fuel sources. Cumulatively these results indicate multiple mechanisms for regulation lipolysis and fatty acid utilization.
ContributorsCampbell, Latoya E (Author) / Lake, Douglas (Thesis advisor) / Liu, Jun (Committee member) / Folmes, Clifford (Committee member) / Sweazea, Karen (Committee member) / Baluch, Debra (Committee member) / Arizona State University (Publisher)
Created2021
161999-Thumbnail Image.png
Description
Organisms regularly face the challenge of having to accumulate and allocate limited resources toward life-history traits. However, direct quantification of how resources are accumulated and allocated is rare. Carotenoids are among the best systems for investigating resource allocation, because they are diet-derived and multi-functional. Birds have been studied extensively with

Organisms regularly face the challenge of having to accumulate and allocate limited resources toward life-history traits. However, direct quantification of how resources are accumulated and allocated is rare. Carotenoids are among the best systems for investigating resource allocation, because they are diet-derived and multi-functional. Birds have been studied extensively with regard to carotenoid allocation towards life-history traits, but direct quantification of variation in carotenoid distribution on a whole-organism scale has yet to be done. Additionally, while we know that scavenger receptor B1 (SCARB1) is important for carotenoid absorption in birds, little is known about the factors that predict how SCARB1 is expressed in wild populations. For my dissertation, I first reviewed challenges associated with statistically analyzing tissue distributions of nutrients (nutrient profiles) and tested how tissue carotenoid distributions (carotenoid profiles) varied by sex, season, health state, and coloration in two bird species, house finches (Haemorhous mexicanus) and zebra finches (Taeniopygia guttata). Then, I investigated the relationship between dietary carotenoid availability, relative expression of SCARB1, and extent of carotenoid-based coloration in a comparative study of wood-warblers (Parulidae). In my review of studies analyzing nutrient profiles, I found that multivariate analyses were the most common, but studies rarely reported intercorrelations among nutrient types. In house finches, all tissue carotenoid profiles varied by sex, season, and coloration. For example, males during autumn (molt) had higher concentrations of 3-hydroxyechinenone (the major red carotenoid in sexually attractive male feathers) in most but not all tissues compared to other season and sex combinations. However, the relationship between color and carotenoid profiles depended on the color metric. In zebra finches, only muscle and spleen carotenoid profiles varied between immune-challenged and control birds. In wood-warblers, I found that capacity to absorb carotenoids was positively correlated with the evolution of carotenoid-based coloration but negatively associated with liver carotenoid accumulation. Altogether, my dissertation illustrates (a) the context-dependence of tissue carotenoid profile variation, (b) that carotenoid-based integumentary coloration is a reflection of tissue carotenoid profiles, and (c) that digestive physiology (e.g., carotenoid absorption) is an important consideration in the study of diet and coloration in wild birds.
ContributorsWebb, Emily (Author) / McGraw, Kevin J (Thesis advisor) / Deviche, Pierre (Committee member) / Martins, Emilia (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2021
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023