This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

156042-Thumbnail Image.png
Description
The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial

The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial proteins expressed in human cell lines, yet they exhibit an organizing principle: that genes and proteins may be treated as modular units that can be moved from their native organism to a novel one. However, protein behavior is always unpredictable; drop-in functionality is not guaranteed.

My work characterizes how two different classes of tools behave in new contexts and explores methods to improve their functionality: 1. CRISPR/Cas9 in human cells and 2. quorum sensing networks in Escherichia coli.

1. The genome-editing tool CRISPR/Cas9 has facilitated easily targeted, effective, high throughput genome editing. However, Cas9 is a bacterially derived protein and its behavior in the complex microenvironment of the eukaryotic nucleus is not well understood. Using transgenic human cell lines, I found that gene-silencing heterochromatin impacts Cas9’s ability to bind and cut DNA in a site-specific manner and I investigated ways to improve CRISPR/Cas9 function in heterochromatin.

2. Bacteria use quorum sensing to monitor population density and regulate group behaviors such as virulence, motility, and biofilm formation. Homoserine lactone (HSL) quorum sensing networks are of particular interest to synthetic biologists because they can function as “wires” to connect multiple genetic circuits. However, only four of these networks have been widely implemented in engineered systems. I selected ten quorum sensing networks based on their HSL production profiles and confirmed their functionality in E. coli, significantly expanding the quorum sensing toolset available to synthetic biologists.
ContributorsDaer, René (Author) / Haynes, Karmella (Thesis advisor) / Brafman, David (Committee member) / Nielsen, David (Committee member) / Kiani, Samira (Committee member) / Arizona State University (Publisher)
Created2017
155857-Thumbnail Image.png
Description
Synthetic gene networks have evolved from simple proof-of-concept circuits to

complex therapy-oriented networks over the past fifteen years. This advancement has

greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a

mechanism that cells use to achieve a discrete number of mutually exclusive states in

response to environmental inputs. However, complex

Synthetic gene networks have evolved from simple proof-of-concept circuits to

complex therapy-oriented networks over the past fifteen years. This advancement has

greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a

mechanism that cells use to achieve a discrete number of mutually exclusive states in

response to environmental inputs. However, complex contextual connections of gene

regulatory networks in natural settings often impede the experimental establishment of

the function and dynamics of each specific gene network.

In this work, diverse synthetic gene networks are rationally designed and

constructed using well-characterized biological components to approach the cell fate

determination and state transition dynamics in multistable systems. Results show that

unimodality and bimodality and trimodality can be achieved through manipulation of the

signal and promoter crosstalk in quorum-sensing systems, which enables bacterial cells to

communicate with each other.

Moreover, a synthetic quadrastable circuit is also built and experimentally

demonstrated to have four stable steady states. Experiments, guided by mathematical

modeling predictions, reveal that sequential inductions generate distinct cell fates by

changing the landscape in sequence and hence navigating cells to different final states.

Circuit function depends on the specific protein expression levels in the circuit.

We then establish a protein expression predictor taking into account adjacent

transcriptional regions’ features through construction of ~120 synthetic gene circuits

(operons) in Escherichia coli. The predictor’s utility is further demonstrated in evaluating genes’ relative expression levels in construction of logic gates and tuning gene expressions and nonlinear dynamics of bistable gene networks.

These combined results illustrate applications of synthetic gene networks to

understand the cell fate determination and state transition dynamics in multistable

systems. A protein-expression predictor is also developed to evaluate and tune circuit

dynamics.
ContributorsWu, Fuqing (Author) / Wang, Xiao (Thesis advisor) / Haynes, Karmella (Committee member) / Marshall, Pamela (Committee member) / Nielsen, David (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2017
151577-Thumbnail Image.png
Description
A dental exam in twenty-first century America generally includes the taking of radiographs, which are x-ray images of the mouth. These images allow dentists to see structures below the gum line and within the teeth. Having a patient's radiographs on file has become a dental standard of care in many

A dental exam in twenty-first century America generally includes the taking of radiographs, which are x-ray images of the mouth. These images allow dentists to see structures below the gum line and within the teeth. Having a patient's radiographs on file has become a dental standard of care in many states, but x-rays were only discovered a little over 100 years ago. This research analyzes how and why the x-ray image has become a ubiquitous tool in the dental field. Primary literature written by dentists and scientists of the time shows that the x-ray was established in dentistry by the 1950s. Therefore, this thesis tracks the changes in x-ray technological developments, the spread of information and related safety concerns between 1890 and 1955. X-ray technology went from being an accidental discovery to a device commonly purchased by dentists. X-ray information started out in the form of the anecdotes of individuals and led to the formation of large professional groups. Safety concerns of only a few people later became an important facet of new devices. These three major shifts are described by looking at those who prompted the changes; they fall into the categories of people, technological artifacts and institutions. The x-ray became integrated into dentistry as a product of the work of people such as C. Edmund Kells, a proponent of dental x-rays, technological improvements including faster film speed, and the influence of institutions such as Victor X-Ray Company and the American Dental Association. These changes that resulted established a strong foundation of x-ray technology in dentistry. From there, the dental x-ray developed to its modern form.
ContributorsMartinez, Britta (Author) / Ellison, Karin (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Hurlbut, Ben (Committee member) / Arizona State University (Publisher)
Created2013
Description
Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of

Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of biomimicry and structural complexity of 2D models. As such, there is a critical need to develop a 3D, biomimetic human cardiac tissue within precisely engineered in vitro platforms. This PhD dissertation involved development of an innovative anisotropic 3D human stem cell-derived cardiac tissue on-a-chip model (i.e., heart on-a-chip), with an enhanced maturation tissue state, as demonstrated through extensive biological assessments. To demonstrate the potential of the platform to study cardiac-specific diseases, the developed heart on-a-chip was used to model myocardial infarction (MI) due to exposure to hypoxia. The successful induction of MI on-a-chip (heart attack-on-a-chip) was evidenced through fibrotic tissue response, contractile dysregulation, and transcriptomic regulation of key pathways.This dissertation also described incorporation of CRISPR/Cas9 gene-editing to create a human induced pluripotent stem cell line (hiPSC) with a mutation in KCNH2, the gene implicated in Long QT Syndrome Type 2 (LQTS2). This novel stem cell line, combined with the developed heart on-a-chip technology, led to creation of a 3D human cardiac on-chip tissue model of LQTS2 disease.. Extensive mechanistic biological and electrophysiological characterizations were performed to elucidate the mechanism of R531W mutation in KCNH2, significantly adding to existing knowledge about LQTS2. In summary, this thesis described creation of a LQTS2 cardiac on-a-chip model, incorporated with gene-edited hiPSC-cardiomyocytes and hiPSC-cardiac fibroblasts, to study mechanisms of LQTS2. Overall, this dissertation provides broad impact for fundamental studies toward cardiac biological studies as well as drug screening applications. Specifically, the developed heart on-a-chip from this dissertation provides a unique alternative platform to animal testing and 2D studies that recapitulates the human myocardium, with capabilities to model critical CVDs to study disease mechanisms, and/or ultimately lead to development of future therapeutic strategies.
ContributorsVeldhuizen, Jaimeson (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Ebrahimkhani, Mo (Committee member) / Migrino, Raymond Q (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2021
161448-Thumbnail Image.png
Description
In the US, menstrual education, which provides key information about menstrual hygiene and health to both young girls and boys, historically lacks biologically accurate information about the menstrual cycle and perpetuates harmful perceptions about female reproductive health. When people are unable to differentiate between normal and abnormal menstrual bleeding, based

In the US, menstrual education, which provides key information about menstrual hygiene and health to both young girls and boys, historically lacks biologically accurate information about the menstrual cycle and perpetuates harmful perceptions about female reproductive health. When people are unable to differentiate between normal and abnormal menstrual bleeding, based on a lack of quality menstrual education, common gynecological conditions often remain underreported. This raises a question as to how girls’ menstrual education experiences influence the ways in which they perceive normal menstrual bleeding and seek treatment for common abnormalities, such as heavy, painful, or irregular menstrual bleeding. A mixed methods approach allowed evaluation of girls’ abilities to recognize abnormal menstrual bleeding. A literature review established relevant historical and social context on the prevalence and quality of menstrual education in the US. Then, five focus groups, each including five to eight college-aged women, totaling thirty-three participants, allowed for macro-level analysis of current challenges and gaps in knowledge related to menstruation. To better examine the relationship between menstrual education and reproductive health outcomes, twelve semi-structured, one-on-one interviews allowed micro-level analysis. Those interviews consisted of women diagnosed with endometriosis and polycystic ovary syndrome, common gynecological conditions that include abnormal menstrual bleeding. Developing a codebook of definitions and exemplars of significant text segments and applying it to the collected data revealed several themes. For example, mothers, friends, teachers, the Internet, and social media are among the most common sources of information about menstrual hygiene and health. Yet, women reported that those sources of information often echoed stigmatized ideas about menstruation, eliciting feelings of shame and fear. That poor quality of information was instrumental to women’s abilities to detect and report abnormal menstrual bleeding. Women desire and need biologically accurate information about reproductive health, including menstruation and ovulation, fertility, and methods of birth control as treatments for abnormal menstrual bleeding. Unfortunately, menstrual education often leaves girls ill-equipped to identify and seek treatment for common gynecological conditions. Those findings may influence current menstrual education, incorporating biological information and actively dismissing common misconceptions about menstruation that influence stigma.
ContributorsSantora, Emily Katherine (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin (Committee member) / Hurlbut, Ben (Committee member) / Arizona State University (Publisher)
Created2021