This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

151939-Thumbnail Image.png
Description
Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies).

Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies). On the diagnostic side, serum containing specific infection-related antibodies create unique and distinct "pathogen-immunosignatures" on the random peptide microarray distinct from the healthy control serum, and this different mode of binding can be used as a more precise measurement than traditional ELISA tests. My thesis project is separated into these two parts: the first part falls into the treatment side and the second one focuses on the diagnostic side. My first chapter shows that a substitution amino acid peptide library helps to improve the activity of a recently reported synthetic antimicrobial peptide selected by the random peptide microarray. By substituting one or two amino acids of the original lead peptide, the new substitutes show changed hemolytic effects against mouse red blood cells and changed potency against two pathogens: Staphylococcus aureus and Pseudomonas aeruginosa. Two new substitutes are then combined together to form the synbody, which shows a significantly antimicrobial potency against Staphylococcus aureus (<0.5uM). In the second chapter, I explore the possibility of using the 10K Ver.2 random peptide microarray to monitor the humoral immune response of dengue. Over 2.5 billion people (40% of the world's population) live in dengue transmitting areas. However, currently there is no efficient dengue treatment or vaccine. Here, with limited dengue patient serum samples, we show that the immunosignature has the potential to not only distinguish the dengue infection from non-infected people, but also the primary dengue infection from the secondary dengue infections, dengue infection from West Nile Virus (WNV) infection, and even between different dengue serotypes. By further bioinformatic analysis, we demonstrate that the significant peptides selected to distinguish dengue infected and normal samples may indicate the epitopes responsible for the immune response.
ContributorsWang, Xiao (Author) / Johnston, Stephen Albert (Thesis advisor) / Blattman, Joseph (Committee member) / Arntzen, Charles (Committee member) / Arizona State University (Publisher)
Created2013
153543-Thumbnail Image.png
Description
The majority of non-small cell lung cancer (NSCLC) patients (70%) are diagnosed with adenocarcinoma versus other histological subtypes. These patients often present with advanced, metastatic disease and frequently relapse after treatment. The tumor suppressor, Liver Kinase B1, is frequently inactivated in adenocarcinomas and loss of function is associated with

The majority of non-small cell lung cancer (NSCLC) patients (70%) are diagnosed with adenocarcinoma versus other histological subtypes. These patients often present with advanced, metastatic disease and frequently relapse after treatment. The tumor suppressor, Liver Kinase B1, is frequently inactivated in adenocarcinomas and loss of function is associated with a highly aggressive, metastatic tumor (1). Identification of the mechanisms deregulated with LKB1 inactivation could yield targeted therapeutic options for adenocarcinoma patients. Re-purposing the immune system to support tumor growth and aid in metastasis has been shown to be a feature in cancer progression (2). Tumor associated macrophages (TAMs) differentiate from monocytes, which are recruited to the tumor microenvironment via secretion of chemotaxic factors by cancer cells. We find that NSCLC cells deficient in LKB1 display increased secretion of C-C motif ligand 2 (CCL2), a chemokine involved in monocyte recruitment. To elucidate the molecular pathway regulating CCL2 up-regulation, we investigated inhibitors of substrates downstream of LKB1 signaling in A549, H23, H2030 and H838 cell lines. Noticeably, BAY-11-7082 (NF-κB inhibitor) reduced CCL2 secretion by an average 92%. We further demonstrate that a CCR2 antagonist and neutralizing CCL2 antibody substantially reduce monocyte migration to NSCLC (H23) cell line conditioned media. Using an in vivo model of NSCLC, we find that LKB1 deleted tumors demonstrate a discernible increase in CCL2 levels compared to normal lung. Moreover, tumors display an increase in the M2:M1 macrophage ratio and increase in tumor associated neutrophil (TAN) infiltrate compared to normal lung. This M2 shift was significantly reduced in mice treated with anti-CCL2 or a CCR2 antagonist and the TAN infiltrate was significantly reduced with the CCR2 antagonist. These data suggest that deregulation of the CCL2/CCR2 signaling axis could play a role in cancer progression in LKB1 deficient tumors.
ContributorsFriel, Jacqueline (Author) / Inge, Landon (Thesis advisor) / Lake, Douglas (Thesis advisor) / Blattman, Joseph (Committee member) / Arizona State University (Publisher)
Created2015
156422-Thumbnail Image.png
Description
Aboveground net primary production (ANPP) and belowground net primary production (BNPP) may not be influenced equally by the same factors in arid grasslands. Precipitation is known to affect ANPP and BNPP, while soil fauna such as nematodes affect the BNPP through herbivory and predation. This study on black grama grass

Aboveground net primary production (ANPP) and belowground net primary production (BNPP) may not be influenced equally by the same factors in arid grasslands. Precipitation is known to affect ANPP and BNPP, while soil fauna such as nematodes affect the BNPP through herbivory and predation. This study on black grama grass (Bouteloua eriopoda) in the Chihuahuan Desert investigates the effects of precipitation and nematode presence or absence on net primary production (NPP) as well as the partitioning between the aboveground and belowground components, in this case, the fraction of total net primary production occurring belowground (fBNPP). I used a factorial experiment to investigate the effects of both precipitation and nematode presence on the components of NPP. I used rainout shelters and an irrigation system to alter precipitation totals, while I used defaunated and re-inoculated soil for the nematode treatments. Precipitation treatment and seasonal soil moisture had no effect on the BNPP and a nonsignificant positive effect on the ANPP. The fBNPP decreased with increasing precipitation and seasonal soil moisture, though without a significant effect. No predator nematodes were found in any of the microcosms at the end of the experiment, though other functional groups of nematodes, including herbivores, were found in the microcosms. Total nematode numbers did not vary significantly between nematode treatments, indicating that the inoculation process did not last for the whole experiment or that nematodes had little plant material to eat and resulted in low population density. Nematode presence did not affect the BNPP, ANPP, or the fBNPP. There were no significant interactions between precipitation and nematode treatment. The results are inconclusive, possibly as a result of ecosystem trends during an unusually high precipitation year, as well as the very low NPP values in the experiment that correlated with low nematode community numbers.
ContributorsWiedenfeld, Amy (Author) / Sala, Osvaldo (Thesis advisor) / Gerber, Leah (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2018
154884-Thumbnail Image.png
Description
Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions.

Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions. Current diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. Commercially available Diamedix Immunosimplicity® Measles IgG test kit has been shown to have 91.1% sensitivity and 93.8% specificity, with a positive predictive value of 88.7% and a negative predictive value of 90.9% on the basis of a PRN titer of 120. There is an increasing need for rapid screening for measles specific immunity in outbreak settings. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to three individual measles virus (MeV) proteins.

Measles virus (MeV) genes were subcloned into the pJFT7_nGST vector to generate N- terminal GST fusion proteins. Single MeV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured with mouse anti-GST mAb and sheep anti-mouse IgG. Relative light units (RLUs) as luminescence was measured. Antibodies to MeV antigens were measured in 40 serum samples from healthy subjects.

Protein expression of three MeV genes of interest was measured in comparison with vector control and statistical significance was determined using the Student’s t-test (p<0.05). N expressed at the highest level with an average RLU value of 3.01 x 109 (p<0.001) and all proteins were expressed at least 50% greater than vector control (4.56 x 106 RLU). 36/40 serum samples had IgG to N (Ag:GST ratio>1.21), F (Ag:GST ratio>1.92), or H (Ag:GST ratio> 1.23).

These data indicate that the in vitro expression of MeV antigens, N, F, and H, were markedly improved by subcloning into pJFT7_nGST vector to generate N-terminal GST fusion proteins. The expression of single MeV genes N, F and H, are suitable antigens for serologic capture analysis of measles-specific antibodies. These preliminary data can be used to design a more intensive study to explore the possibilities of using these MeV antigens as a diagnostic marker.
ContributorsMushtaq, Zuena (Author) / Anderson, Karen (Thesis advisor) / Blattman, Joseph (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2016
155487-Thumbnail Image.png
Description
Principle-based ethical frameworks, which commonly make use of codes of ethics, have come to be the popular approach in guiding ethical behavior within scientific research. In this thesis project, I investigate the benefits and shortcomings of this approach, ultimately to argue that codes of ethics are valuable as an exercise

Principle-based ethical frameworks, which commonly make use of codes of ethics, have come to be the popular approach in guiding ethical behavior within scientific research. In this thesis project, I investigate the benefits and shortcomings of this approach, ultimately to argue that codes of ethics are valuable as an exercise in developing a reconciled value profile for a given research community, and also function well as an internal and external proclamation of values and norms. However, this approach results in technical adherence, at best, and given the extent to which scientific research now irreversibly shapes our experience as human beings, I argue for the importance of cultivating ethical virtues in scientific research. In the interest of doing so I explore concepts from Aristotelian virtue ethics, to consider how to ameliorate the shortcomings of principle-based approaches. This project was inspired by a call to research and develop an ethical framework upon which to found a cooperative research network that would be aimed at combating the spread of emerging and re-emerging infectious diseases in resource-restricted countries, specifically throughout Latin America. The desire to found this network on an ethics-based framework is to move beyond technical compliance and cultivate a research community committed to integrity, therefore establishing and maintaining trust and communication that will allow for unprecedented productive collaboration and meaningful outcomes. I demonstrate in this thesis that this requires more than a code of ethics, and use this initiative as a case study to exhibit the merit of integrating concepts from virtue ethics.
ContributorsCraer, Jennifer Ryan (Author) / Ellison, Karin (Thesis advisor) / Sarewitz, Daniel (Committee member) / Blattman, Joseph (Committee member) / Robert, Jason S (Committee member) / Arizona State University (Publisher)
Created2017
171749-Thumbnail Image.png
Description
Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant results in controlling tumor growth. The adaptive therapy model comes from the integrated pest management agricultural strategy, predator prey model, and the unique intra- and inter-tumor heterogeneity of tumors. The purpose of this thesis is to analyze and compare gemcitabine dose response on hormone refractory breast cancer cells retrieved from mice using an adaptive therapy strategy with standard therapy treatment. In this study, we compared intermittent (drug holiday) adaptive therapy with maximum tolerated dose therapy. The MCF7 resistant cell lines to both fulvestrant and palbociclib were injected into the mammary fat pads of 8 weeks old NOD/SCID gamma (NSG) mice which were then treated with gemcitabine. Tumor burden graphs were made to track tumor growth/decline during different treatments while Drug Dose Response (DDR) curves were made to test the sensitivity of the cell lines to the drug gemcitabine. The tumor burden graphs showed success in controlling the tumor burden with intermittent treatment. The DDR curves showed a positive result in using the adaptive therapy treatment method to treat mice with gemcitabine. Due to some fluctuating DDR results, the sensitivity of the cell lines to gemcitabine needs to be further studied by repeating the DDR experiment on the other mice cell lines for stronger results.
ContributorsConti, Aviona Christina (Author) / Maley, Carlo (Thesis advisor) / Blattman, Joseph (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2022
191702-Thumbnail Image.png
Description
Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is

Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is through the reduction of the mosquito vector population size and/or reducing vector-human contact using insecticides. Frontline tools in malaria (an MBD caused by a parasite) control and elimination have been drugs (targeting the malaria parasite) and insecticides (targeting the vectors) through indoor residual spraying (IRS) (spraying the internal walls and sometimes the roofs of dwellings with residual insecticides to kill adult mosquito vectors), and long-lasting insecticidal nets (LLINs), while arboviral vectors are frequently targeted using outdoor fogging and space spraying (indoor or outdoor spraying of insecticides to kill adult mosquito vectors). Integrative and novel vector control efforts are urgently needed since the aforementioned tools may not be as effective against those mosquito species that are resistant to insecticides and/or have a different (or changed) behavior allowing them to avoid existing tools. In Chapters 2 and 3, I investigate mosquito vector surveillance in Arizona by (i) discussing the species composition and public health implications of the State’s mosquito fauna, and (ii) comparing the effectiveness of 4 different carbon dioxide (CO2) sources in attracting different mosquito species on the Arizona State University Tempe Campus. In Chapters 4 and 5, I investigate a novel vector control tool by (i) completing a literature review on using electric fields (EFs) to control insects, and (ii) presenting novel data on using Insulated Conductor Wires (ICWs) to generate EFs that prevent host-seeking female Aedes aegypti from entering spaces. In Chapter 6, I discuss the non-target effects of chemical malaria control on other arthropods, including other biological and mechanical infectious disease vectors. Overall, this dissertation highlights the important role that the development of novel surveillance and vector control tools could play in improved mosquito control, which ultimately will reduce disease morbidity and mortality.
ContributorsJobe, Ndey Bassin (Author) / Paaijmans, Krijn (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Huijben, Silvie (Committee member) / Arizona State University (Publisher)
Created2024
158570-Thumbnail Image.png
Description
Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic

Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic drivers such as photodegradation are commonly perceived to be more important. I assessed the significance of microbes to the decay of plant litter in the Sonoran Desert. I found that the variation in decay among 16 leaf litter types was correlated with microbial respiration rates (i.e. CO2 emission) from litter, and rates were strongly correlated with water-vapor sorption rates of litter. Water-vapor sorption during high-humidity periods activates microbes and subsequent respiration appears to be a significant decay mechanism. I also found that exposure to sunlight accelerated litter decay (i.e. photodegradation) and enhanced subsequent respiration rates of litter. The abundance of bacteria (but not fungi) on the surface of litter exposed to sunlight was strongly correlated with respiration rates, as well as litter decay, implying that exposure to sunlight facilitated activity of surface bacteria which were responsible for faster decay. I also assessed the response of respiration to temperature and moisture content (MC) of litter, as well as the relationship between relative humidity and MC. There was a peak in respiration rates between 35-40oC, and, unexpectedly, rates increased from 55 to 70oC with the highest peak at 70oC, suggesting the presence of thermophilic microbes or heat-tolerant enzymes. Respiration rates increased exponentially with MC, and MC was strongly correlated with relative humidity. I used these relationships, along with litter microclimate and C loss data to estimate the contribution of this pathway to litter C loss over 34 months. Respiration was responsible for 24% of the total C lost from litter – this represents a substantial pathway for C loss, over twice as large as the combination of thermal and photochemical abiotic emission. My findings elucidate two mechanisms that explain why microbial drivers were more significant than commonly assumed: activation of microbes via water-vapor sorption and high respiration rates at high temperatures.
ContributorsTomes, Alexander (Author) / Day, Thomas (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Ball, Becky (Committee member) / Hall, Sharon (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2020