This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 11
Filtering by

Clear all filters

151709-Thumbnail Image.png
Description
Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of

Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of five AWS and five paired control sites (treatments) in the surrounding Sonoran desert from October 2011 to May 2012. I measured plant species richness, density, and percent cover in the spring of 2012. A Multi-response Permutation Procedure was used to identify differences in small mammal community abundance, biomass, and species richness by season and treatment. I used Principle Component Analysis to reduce 11 habitat characteristics to five habitat factors. I related rodent occurrence to habitat characteristics using multiple and logistic regression. A total of 370 individual mammals representing three genera and eight species of rodents were captured across 4800 trap nights. Desert pocket mouse (Chaetodipus penicillatus) was the most common species in both seasons and treatments. Whereas rodent community abundance, biomass, and richness were similar between seasons, community variables of AWS were greater than CS. Rodent diversity was similar between treatments. Desert pocket mouse abundance and biomass were twice as high at AWS when compared to controls. Biomass of white-throated woodrat (Neotoma albigula) was five times greater at AWS. Habitat characteristics were similar between treatments. Neither presence of water nor distance to water explained substantial habitat variation. Occurrence of rodent species was associated with habitat characteristics. Desert rodent communities are adapted for arid environments (i.e. Heteromyids) and are not dependent on "free water". Higher abundances of desert pocket mouse at AWS were most likely related to increased disturbance and debris and not the presence of water. The results of this study and previous studies suggest that more investigation is needed and that short term studies may not be able to detect interactions (if any) between AWS and desert small mammal communities.
ContributorsSwitalski, Aaron (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2013
152635-Thumbnail Image.png
Description
Urbanization provides an excellent opportunity to examine the effects of human-induced rapid environmental change (HIREC) on natural ecosystems. Certain species can dominate in urban habitats at the expense of biodiversity. Phenotypic plasticity may be the mechanism by which these 'urban exploiters' flourish in urban areas. Color displays and condition-dependent phenotypes

Urbanization provides an excellent opportunity to examine the effects of human-induced rapid environmental change (HIREC) on natural ecosystems. Certain species can dominate in urban habitats at the expense of biodiversity. Phenotypic plasticity may be the mechanism by which these 'urban exploiters' flourish in urban areas. Color displays and condition-dependent phenotypes are known to be highly plastic. However, conspicuous color displays are perplexing in that they can be costly to produce and may increase detection by enemies. The Western black widow spider () is a superabundant pest species that forms dense aggregations throughout metropolitan Phoenix, Arizona, USA. Adult female display a red hourglass on their abdomen, which is speculated to function as a conspicuous warning signal to enemies. Here, I performed field studies to identify how widow morphology and hourglass color differ between urban and desert subpopulations. I also conducted laboratory experiments to examine the dietary sensitivity of hourglass coloration and to identify its functional role in the contexts of agonism, mating, and predator defense. My field data reveal significant spatial variation across urban and desert subpopulations in ecology and color. Furthermore, hourglass coloration was significantly influenced by environmental factors unique to urban habitats. Desert spiders were found to be smaller and less colorful than urban spiders. Throughout, I observed a positive correlation between body condition and hourglass size. Laboratory diet manipulations empirically confirm the condition-dependence of hourglass size. Additionally, widows with extreme body conditions exhibited condition-dependent coloration. However, hourglass obstruction and enlargement did not produce any effects on the outcome of agonistic encounters, male courtship, or predator deterrence. This work offers important insights into the effects of urbanization on the ecology and coloration of a superabundant pest species. While the function of the hourglass remains undetermined, my findings characterize the black widow's hourglass as extremely plastic. Plastic responses to novel environmental conditions can modify the targets of natural selection and subsequently influence evolutionary outcomes. Therefore, assuming a heritable component to this plasticity, the response of hourglass plasticity to the abrupt environmental changes in urban habitats may result in the rapid evolution of this phenotype.
ContributorsGburek, Theresa (Author) / Johnson, James C. (Thesis advisor) / McGraw, Kevin J. (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2014
152736-Thumbnail Image.png
Description
Grassland habitat restoration activities are occurring within the semi-arid grasslands of the Agua Fria National Monument located 65 km north of Phoenix, AZ. The goal of these restoration activities is to reduce woody species encroachment, remove lignified plant materials and recycle nutrients within the ecosystem thus improving range conditions for

Grassland habitat restoration activities are occurring within the semi-arid grasslands of the Agua Fria National Monument located 65 km north of Phoenix, AZ. The goal of these restoration activities is to reduce woody species encroachment, remove lignified plant materials and recycle nutrients within the ecosystem thus improving range conditions for both wildlife species and livestock. Broadcast burning, juniper thinning and slash pile burns are the principle tools used to accomplish resource objectives. Line cover, belt transect, densities, heights and biomass of vegetation data were collected to determine the response of the vegetative community to habitat restoration activities. Principal Component Analysis (PCA) was used to reduce data analysis to the more influential factors. Regression analysis was conducted for statistically significant response variables. Quadratic regression analysis found low predictive values. In broadcast burn treatment units, all important factors as identified by PCA had low predictive factors but significantly differed (R2 <0.01, p<0.05) between unburned and the years post treatment. Regression analysis found significant, albeit weak, relationships between time since treatment and independent variables. In pile burn treatment units, data reduction by PCA was not possible in a biologically meaningful way due to the high variability within treatment units. This suggests the effect of juniper encroachment on grassland vegetation persists long after junipers have been cut and burned. This study concluded that broadcast burning of the central Arizona grasslands does significantly alter many components of the vegetative community. Fuels treatments generally initially reduced both perennial woody species and grasses in number and height for two year post fire. However, palatable shrubs, in particular shrubby buckwheat, were not significantly different in broadcast burn treatment areas. The vegetative community characteristics of juniper encroached woodlands of central Arizona are unaffected by the removal and burning of junipers aside from the removal of hiding cover for predators for multiple years. It is recommended that habitat restoration activities continue provided the needs of wildlife are considered, especially pronghorn, with the incorporation of state and transition models specific to each of the respective ecological site descriptions and with the consideration of the effects of fire to pronghorn fawning habitat.
ContributorsSitzmann, Paul Roman (Author) / Miller, William (Thesis advisor) / Alford, Eddie (Committee member) / Green, Douglas (Committee member) / Arizona State University (Publisher)
Created2014
152797-Thumbnail Image.png
Description
There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices.

There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices. Algae are grown on an area of land for a certain time period with the aim of harvesting the biomass produced. One of the advantages of using algae biomass is that it can be used as a source of energy in the form of biofuels. Major advances in algae research and development practices have led to new knowledge about the remarkable potential of algae to serve as a sustainable source of biofuel. The challenge is to make the price of biofuels from algae cost-competitive with the price of petroleum-based fuels. The scope of this research was to design a concept for an automated system to control specific externalities and determine if integrating the system in an algae cultivation system could improve the algae biomass production process. This research required the installation and evaluation of an algae cultivation process, components selection and computer software programming for an automated system. The results from the automated system based on continuous real time monitored variables validated that the developed system contributes insights otherwise not detected from a manual measurement approach. The implications of this research may lead to technology that can be used as a base model to further improve algae cultivation systems.
ContributorsPuruhito, Emil (Author) / Sommerfeld, Milton (Thesis advisor) / Gintz, Jerry (Thesis advisor) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2014
150161-Thumbnail Image.png
Description
One hypothesis for the small size of insects relative to vertebrates, and the existence of giant fossil insects, is that atmospheric oxygen levels have constrained body sizes because oxygen delivery would be unable to match the needs of metabolically active tissues in larger insects. This study tested whether oxygen delivery

One hypothesis for the small size of insects relative to vertebrates, and the existence of giant fossil insects, is that atmospheric oxygen levels have constrained body sizes because oxygen delivery would be unable to match the needs of metabolically active tissues in larger insects. This study tested whether oxygen delivery becomes more challenging for larger insects by measuring the oxygen-sensitivity of flight metabolic rates and behavior during hovering for 11 different species of dragonflies that range in mass by an order of magnitude. Animals were flown in 7 different oxygen concentrations ranging from 30% to 2.5% to assess the sensitivity of their behavior and flight metabolic rates to oxygen. I also assessed the oxygen-sensitivity of flight in low-density air (nitrogen replaced with helium), to increase the metabolic demands of hovering flight. Lowered atmosphere densities did induce higher metabolic rates. Flight behaviors but not flight metabolic rates were highly oxygen-sensitive. A significant interaction between oxygen and mass was found for total flight time, with larger dragonflies varying flight time more in response to atmospheric oxygen. This study provides some support for the hypothesis that larger insects are more challenged in oxygen delivery, as predicted by the oxygen limitation hypothesis for insect gigantism in the Paleozoic.
ContributorsHenry, Joanna Randyl (Author) / Harrison, Jon F. (Thesis advisor) / Kaiser, Alexander (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2011
150097-Thumbnail Image.png
Description
Once considered an abundant species in the eastern United States, local populations of red-shouldered hawks, Buteo lineatus, have declined due to habitat destruction. This destruction has created suitable habitat for red-tailed hawks, Buteo jamaicensis, and therefore increased competition between these two raptor species. Since suitable habitat is the main limiting

Once considered an abundant species in the eastern United States, local populations of red-shouldered hawks, Buteo lineatus, have declined due to habitat destruction. This destruction has created suitable habitat for red-tailed hawks, Buteo jamaicensis, and therefore increased competition between these two raptor species. Since suitable habitat is the main limiting factor for raptors, a computer model was created to simulate the effect of habitat loss in central Maryland and the impact of increased competition between the more aggressive red-tailed hawk. These simulations showed urban growth contributed to over a 30% increase in red-tailed hawk habitat as red-shouldered hawk habitat decreased 62.5-70.1% without competition and 71.8-76.3% with competition. However there was no significant difference seen between the rate of available habitat decline for current and predicted development growth.
ContributorsMurillo, Crystal (Author) / Whysong, Gary (Thesis advisor) / Alford, Eddie (Committee member) / Miller, William (Committee member) / Arizona State University (Publisher)
Created2011
150734-Thumbnail Image.png
Description
Differences between males and females can evolve through a variety of mechanisms, including sexual and ecological selection. Because coloration is evolutionarily labile, sexually dichromatic species are good models for understanding the evolution of sex differences. While many jumping spiders exhibit diverse and brilliant coloration, they have been notably absent from

Differences between males and females can evolve through a variety of mechanisms, including sexual and ecological selection. Because coloration is evolutionarily labile, sexually dichromatic species are good models for understanding the evolution of sex differences. While many jumping spiders exhibit diverse and brilliant coloration, they have been notably absent from such studies. In the genus Habronattus, females are drab and cryptic while males are brilliantly colored, displaying some of these colors to females during elaborate courtship dances. Here I test multiple hypotheses for the control and function of male color. In the field, I found that Habronattus males indiscriminately court any female they encounter (including other species), so I first examined the role that colors play in species recognition. I manipulated male colors in H. pyrrithrix and found that while they are not required for species recognition, the presence of red facial coloration improves courtship success, but only if males are courting in the sun. Because light environment affects transmission of color signals, the multi-colored displays of males may facilitate communication in variable and unpredictable environments. Because these colors can be costly to produce and maintain, they also have the potential to signal reliable information about male quality to potential female mates. I found that both red facial and green leg coloration is condition dependent in H. pyrrithrix and thus has the potential to signal quality. Yet, surprisingly, this variation in male color does not appear to be important to females. Males of many Habronattus species also exhibit conspicuous markings on the dorsal surface of their abdomens that are not present in females and are oriented away from females during courtship. In the field, I found that these markings are paired with increased leg-waving behavior in a way that resembles the pattern and behavior of wasps; this may provide protection by exploiting the aversions of predators. My data also suggest that different activity levels between the sexes have placed different selection pressures on their dorsal color patterns. Overall, these findings challenge some of the traditional ways that we think about color signaling and provide novel insights into the evolution of animal coloration.
ContributorsTaylor, Lisa Anne (Author) / McGraw, Kevin J. (Thesis advisor) / Clark, David L. (Committee member) / Johnson, James C. (Committee member) / Alcock, John (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2012
150967-Thumbnail Image.png
Description
Colorful ornaments in animals often serve as sexually selected signals of quality. While pigment-based colors are well-studied in these regards, structural colors that result from the interaction of light with photonic nanostructures are comparatively understudied in terms of their consequences in social contexts, their costs of production, and even the

Colorful ornaments in animals often serve as sexually selected signals of quality. While pigment-based colors are well-studied in these regards, structural colors that result from the interaction of light with photonic nanostructures are comparatively understudied in terms of their consequences in social contexts, their costs of production, and even the best way to measure them. Iridescent colors are some of the most brilliant and conspicuous colors in nature, and I studied the measurement, condition-dependence, and signaling role of iridescence in Anna's hummingbirds (Calypte anna). While most animal colors are easily quantified using well-established spectrophotometric techniques, the unique characteristics of iridescent colors present challenges to measurement and opportunities to quantify novel color metrics. I designed and tested an apparatus for careful control and measurement of viewing geometry and highly repeatable measurements. These measurements could be used to accurately characterize individual variation in iridescent Anna's hummingbirds to examine their condition-dependence and signaling role. Next, I examined the literature published to date for evidence of condition-dependence of structural colors in birds. Using meta-analyses, I found that structural colors of all three types - white, ultra-violet/blue, and iridescence - are significantly condition-dependent, meaning that they can convey information about quality to conspecifics. I then investigated whether iridescent colors were condition-dependent in Anna's hummingbirds both in a field correlational study and in an experimental study. Throughout the year, I found that iridescent feathers in both male and female Anna's hummingbirds become less brilliant as they age. Color was not correlated with body condition in any age/sex group. However, iridescent coloration in male Anna's hummingbirds was significantly affected by experimental protein in the diet during feather growth, indicating that iridescent color may signal diet quality. Finally, I examined how iridescent colors were used to mediate social competitions in male and female Anna's hummingbirds. Surprisingly, males that were less colorful won significantly more contests than more colorful males, and colorful males received more aggression. Less colorful males may be attempting to drive away colorful neighbors that may be preferred mates. Female iridescent ornament size and color was highly variable, but did not influence contest outcomes or aggression.
ContributorsMeadows, Melissa (Author) / McGraw, Kevin J. (Thesis advisor) / Rutowski, Ronald L (Committee member) / Sabo, John L (Committee member) / Alcock, John (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2012
153959-Thumbnail Image.png
Description
Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very

Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very common signal types, investigating rare classes of signals may provide new information about how and why animals communicate. My dissertation research focused on rapid physiological color change, a rare signal-type used by relatively few taxa. To answer longstanding questions about this rare class of signals, I employed novel methods to measure rapid color change signals of male veiled chameleons Chamaeleo calyptratus in real-time as seen by the intended conspecific receivers, as well as the associated behaviors of signalers and receivers. In the context of agonistic male-male interactions, I found that the brightness achieved by individual males and the speed of color change were the best predictors of aggression and fighting ability. Conversely, I found that rapid skin darkening serves as a signal of submission for male chameleons, reducing aggression from winners when displayed by losers. Additionally, my research revealed that the timing of maximum skin brightness and speed of brightening were the best predictors of maximum bite force and circulating testosterone levels, respectively. Together, these results indicated that different aspects of color change can communicate information about contest strategy, physiology, and performance ability. Lastly, when I experimentally manipulated the external appearance of chameleons, I found that "dishonestly" signaling individuals (i.e. those whose behavior did not match their manipulated color) received higher aggression from unpainted opponents. The increased aggression received by dishonest signalers suggests that social costs play an important role in maintaining the honesty of rapid color change signals in veiled chameleons. Though the color change abilities of chameleons have interested humans since the time of Aristotle, little was previously known about the signal content of such changes. Documenting the behavioral contexts and information content of these signals has provided an important first step in understanding the current function, underlying control mechanisms, and evolutionary origins of this rare signal type.
ContributorsLigon, Russell (Author) / McGraw, Kevin J. (Committee member) / DeNardo, Dale F (Committee member) / Karsten, Kristopher B (Committee member) / Rutowski, Ronald L (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
157811-Thumbnail Image.png
Description
An insect society needs to share information about important resources in order to collectively exploit them. This task poses a dilemma if the colony must consider multiple resource types, such as food and nest sites. How does it allocate workers appropriately to each resource, and how does it adapt its

An insect society needs to share information about important resources in order to collectively exploit them. This task poses a dilemma if the colony must consider multiple resource types, such as food and nest sites. How does it allocate workers appropriately to each resource, and how does it adapt its recruitment communication to the specific needs of each resource type? In this dissertation, I investigate these questions in the ant Temnothorax rugatulus.

In Chapter 1, I summarize relevant past work on food and nest recruitment. Then I describe T. rugatulus and its recruitment behavior, tandem running, and I explain its suitability for these questions. In Chapter 2, I investigate whether food and nest recruiters behave differently. I report two novel behaviors used by recruiters during their interaction with nestmates. Food recruiters perform these behaviors more often than nest recruiters, suggesting that they convey information about target type. In Chapter 3, I investigate whether colonies respond to a tradeoff between foraging and emigration by allocating their workforce adaptively. I describe how colonies responded when I posed a tradeoff by manipulating colony need for food and shelter and presenting both resources simultaneously. Recruitment and visitation to each target partially matched the predictions of the tradeoff hypothesis. In Chapter 4, I address the tuned error hypothesis, which states that the error rate in recruitment is adaptively tuned to the patch area of the target. Food tandem leaders lost followers at a higher rate than nest tandem leaders. This supports the tuned error hypothesis, because food targets generally have larger patch areas than nest targets with small entrances.

This work shows that animal groups face tradeoffs as individual animals do. It also suggests that colonies spatially allocate their workforce according to resource type. Investigating recruitment for multiple resource types gives a better understanding of exploitation of each resource type, how colonies make collective decisions under conflicting goals, as well as how colonies manage the exploitation of multiple types of resources differently. This has implications for managing the health of economically important social insects such as honeybees or invasive fire ants.
ContributorsCho, John Yohan (Author) / Pratt, Stephen C (Thesis advisor) / Hölldobler, Bert (Committee member) / Liebig, Jürgen R (Committee member) / Amazeen, Polemnia G (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2019