This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 7 of 7
Filtering by

Clear all filters

151709-Thumbnail Image.png
Description
Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of

Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of five AWS and five paired control sites (treatments) in the surrounding Sonoran desert from October 2011 to May 2012. I measured plant species richness, density, and percent cover in the spring of 2012. A Multi-response Permutation Procedure was used to identify differences in small mammal community abundance, biomass, and species richness by season and treatment. I used Principle Component Analysis to reduce 11 habitat characteristics to five habitat factors. I related rodent occurrence to habitat characteristics using multiple and logistic regression. A total of 370 individual mammals representing three genera and eight species of rodents were captured across 4800 trap nights. Desert pocket mouse (Chaetodipus penicillatus) was the most common species in both seasons and treatments. Whereas rodent community abundance, biomass, and richness were similar between seasons, community variables of AWS were greater than CS. Rodent diversity was similar between treatments. Desert pocket mouse abundance and biomass were twice as high at AWS when compared to controls. Biomass of white-throated woodrat (Neotoma albigula) was five times greater at AWS. Habitat characteristics were similar between treatments. Neither presence of water nor distance to water explained substantial habitat variation. Occurrence of rodent species was associated with habitat characteristics. Desert rodent communities are adapted for arid environments (i.e. Heteromyids) and are not dependent on "free water". Higher abundances of desert pocket mouse at AWS were most likely related to increased disturbance and debris and not the presence of water. The results of this study and previous studies suggest that more investigation is needed and that short term studies may not be able to detect interactions (if any) between AWS and desert small mammal communities.
ContributorsSwitalski, Aaron (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2013
152736-Thumbnail Image.png
Description
Grassland habitat restoration activities are occurring within the semi-arid grasslands of the Agua Fria National Monument located 65 km north of Phoenix, AZ. The goal of these restoration activities is to reduce woody species encroachment, remove lignified plant materials and recycle nutrients within the ecosystem thus improving range conditions for

Grassland habitat restoration activities are occurring within the semi-arid grasslands of the Agua Fria National Monument located 65 km north of Phoenix, AZ. The goal of these restoration activities is to reduce woody species encroachment, remove lignified plant materials and recycle nutrients within the ecosystem thus improving range conditions for both wildlife species and livestock. Broadcast burning, juniper thinning and slash pile burns are the principle tools used to accomplish resource objectives. Line cover, belt transect, densities, heights and biomass of vegetation data were collected to determine the response of the vegetative community to habitat restoration activities. Principal Component Analysis (PCA) was used to reduce data analysis to the more influential factors. Regression analysis was conducted for statistically significant response variables. Quadratic regression analysis found low predictive values. In broadcast burn treatment units, all important factors as identified by PCA had low predictive factors but significantly differed (R2 <0.01, p<0.05) between unburned and the years post treatment. Regression analysis found significant, albeit weak, relationships between time since treatment and independent variables. In pile burn treatment units, data reduction by PCA was not possible in a biologically meaningful way due to the high variability within treatment units. This suggests the effect of juniper encroachment on grassland vegetation persists long after junipers have been cut and burned. This study concluded that broadcast burning of the central Arizona grasslands does significantly alter many components of the vegetative community. Fuels treatments generally initially reduced both perennial woody species and grasses in number and height for two year post fire. However, palatable shrubs, in particular shrubby buckwheat, were not significantly different in broadcast burn treatment areas. The vegetative community characteristics of juniper encroached woodlands of central Arizona are unaffected by the removal and burning of junipers aside from the removal of hiding cover for predators for multiple years. It is recommended that habitat restoration activities continue provided the needs of wildlife are considered, especially pronghorn, with the incorporation of state and transition models specific to each of the respective ecological site descriptions and with the consideration of the effects of fire to pronghorn fawning habitat.
ContributorsSitzmann, Paul Roman (Author) / Miller, William (Thesis advisor) / Alford, Eddie (Committee member) / Green, Douglas (Committee member) / Arizona State University (Publisher)
Created2014
152797-Thumbnail Image.png
Description
There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices.

There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices. Algae are grown on an area of land for a certain time period with the aim of harvesting the biomass produced. One of the advantages of using algae biomass is that it can be used as a source of energy in the form of biofuels. Major advances in algae research and development practices have led to new knowledge about the remarkable potential of algae to serve as a sustainable source of biofuel. The challenge is to make the price of biofuels from algae cost-competitive with the price of petroleum-based fuels. The scope of this research was to design a concept for an automated system to control specific externalities and determine if integrating the system in an algae cultivation system could improve the algae biomass production process. This research required the installation and evaluation of an algae cultivation process, components selection and computer software programming for an automated system. The results from the automated system based on continuous real time monitored variables validated that the developed system contributes insights otherwise not detected from a manual measurement approach. The implications of this research may lead to technology that can be used as a base model to further improve algae cultivation systems.
ContributorsPuruhito, Emil (Author) / Sommerfeld, Milton (Thesis advisor) / Gintz, Jerry (Thesis advisor) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2014
150097-Thumbnail Image.png
Description
Once considered an abundant species in the eastern United States, local populations of red-shouldered hawks, Buteo lineatus, have declined due to habitat destruction. This destruction has created suitable habitat for red-tailed hawks, Buteo jamaicensis, and therefore increased competition between these two raptor species. Since suitable habitat is the main limiting

Once considered an abundant species in the eastern United States, local populations of red-shouldered hawks, Buteo lineatus, have declined due to habitat destruction. This destruction has created suitable habitat for red-tailed hawks, Buteo jamaicensis, and therefore increased competition between these two raptor species. Since suitable habitat is the main limiting factor for raptors, a computer model was created to simulate the effect of habitat loss in central Maryland and the impact of increased competition between the more aggressive red-tailed hawk. These simulations showed urban growth contributed to over a 30% increase in red-tailed hawk habitat as red-shouldered hawk habitat decreased 62.5-70.1% without competition and 71.8-76.3% with competition. However there was no significant difference seen between the rate of available habitat decline for current and predicted development growth.
ContributorsMurillo, Crystal (Author) / Whysong, Gary (Thesis advisor) / Alford, Eddie (Committee member) / Miller, William (Committee member) / Arizona State University (Publisher)
Created2011
156639-Thumbnail Image.png
Description
The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects

The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects are composed of representative species of bees and wasps, and all species of ants and termites. Much is known about their organizational structure, but remains to be discovered.

The success of social insects is dependent upon cooperative behavior and adaptive strategies shaped by natural selection that respond to internal or external conditions. The objective of my research was to investigate specific mechanisms that have helped shaped the structure of division of labor observed in social insect colonies, including age polyethism and nutrition, and phenomena known to increase colony survival such as egg cannibalism. I developed various Ordinary Differential Equation (ODE) models in which I applied dynamical, bifurcation, and sensitivity analysis to carefully study and visualize biological outcomes in social organisms to answer questions regarding the conditions under which a colony can survive. First, I investigated how the population and evolutionary dynamics of egg cannibalism and division of labor can promote colony survival. I then introduced a model of social conflict behavior to study the inclusion of different response functions that explore the benefits of cannibalistic behavior and how it contributes to age polyethism, the change in behavior of workers as they age, and its biological relevance. Finally, I introduced a model to investigate the importance of pollen nutritional status in a honeybee colony, how it affects population growth and influences division of labor within the worker caste. My results first reveal that both cannibalism and division of labor are adaptive strategies that increase the size of the worker population, and therefore, the persistence of the colony. I show the importance of food collection, consumption, and processing rates to promote good colony nutrition leading to the coexistence of brood and adult workers. Lastly, I show how taking into account seasonality for pollen collection improves the prediction of long term consequences.
ContributorsRodríguez Messan, Marisabel (Author) / Kang, Yun (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Kuang, Yang (Committee member) / Page Jr., Robert E (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2018
158829-Thumbnail Image.png
Description
Efforts to treat prostate cancer have seen an uptick, as the world’s most commoncancer in men continues to have increasing global incidence. Clinically, metastatic
prostate cancer is most commonly treated with hormonal therapy. The idea behind
hormonal therapy is to reduce androgen production, which prostate cancer cells
require for growth. Recently, the exploration

Efforts to treat prostate cancer have seen an uptick, as the world’s most commoncancer in men continues to have increasing global incidence. Clinically, metastatic
prostate cancer is most commonly treated with hormonal therapy. The idea behind
hormonal therapy is to reduce androgen production, which prostate cancer cells
require for growth. Recently, the exploration of the synergistic effects of the drugs
used in hormonal therapy has begun. The aim was to build off of these recent
advancements and further refine the synergistic drug model. The advancements I
implement come by addressing biological shortcomings and improving the model’s
internal mechanistic structure. The drug families being modeled, anti-androgens,
and gonadotropin-releasing hormone analogs, interact with androgen production in a
way that is not completely understood in the scientific community. Thus the models
representing the drugs show progress through their ability to capture their effect
on serum androgen. Prostate-specific antigen is the primary biomarker for prostate
cancer and is generally how population models on the subject are validated. Fitting
the model to clinical data and comparing it to other clinical models through the
ability to fit and forecast prostate-specific antigen and serum androgen is how this
improved model achieves validation. The improved model results further suggest that
the drugs’ dynamics should be considered in adaptive therapy for prostate cancer.
ContributorsReckell, Trevor (Author) / Kostelich, Eric (Thesis advisor) / Kuang, Yang (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2020
158268-Thumbnail Image.png
Description
The analysis focuses on a two-population, three-dimensional model that attempts to accurately model the growth and diffusion of glioblastoma multiforme (GBM), a highly invasive brain cancer, throughout the brain. Analysis into the sensitivity of the model to

changes in the diffusion, growth, and death parameters was performed, in order to find

The analysis focuses on a two-population, three-dimensional model that attempts to accurately model the growth and diffusion of glioblastoma multiforme (GBM), a highly invasive brain cancer, throughout the brain. Analysis into the sensitivity of the model to

changes in the diffusion, growth, and death parameters was performed, in order to find a set of parameter values that accurately model observed tumor growth for a given patient. Additional changes were made to the diffusion parameters to account for the arrangement of nerve tracts in the brain, resulting in varying rates of diffusion. In general, small changes in the growth rates had a large impact on the outcome of the simulations, and for each patient there exists a set of parameters that allow the model to simulate a tumor that matches observed tumor growth in the patient over a period of two or three months. Furthermore, these results are more accurate with anisotropic diffusion, rather than isotropic diffusion. However, these parameters lead to inaccurate results for patients with tumors that undergo no observable growth over the given time interval. While it is possible to simulate long-term tumor growth, the simulation requires multiple comparisons to available MRI scans in order to find a set of parameters that provide an accurate prognosis.
ContributorsTrent, Austin Lee (Author) / Kostelich, Eric (Thesis advisor) / Gumel, Abba (Committee member) / Kuang, Yang (Committee member) / Arizona State University (Publisher)
Created2020