This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

152747-Thumbnail Image.png
Description
ABSTRACT The hormone leptin is an important regulator of body weight and energy balance, while nitric oxide (NO) produced in the blood vessels is beneficial for preventing disease-induced impaired vasodilation and hypertension. Elevations in the free radical superoxide can result in impaired vasodilation through scavenging of NO. Omega 3 is

ABSTRACT The hormone leptin is an important regulator of body weight and energy balance, while nitric oxide (NO) produced in the blood vessels is beneficial for preventing disease-induced impaired vasodilation and hypertension. Elevations in the free radical superoxide can result in impaired vasodilation through scavenging of NO. Omega 3 is a polyunsaturated fatty acid that is beneficial at reducing body weight and in lowering many cardiovascular risk factors like atherosclerosis. The present study was designed to examine the change in plasma concentrations of leptin, nitric oxide, and the antioxidant superoxide dismutase in addition to examining the association between leptin and NO in healthy normal weight adult female subjects before and following omega 3 intakes. Participants were randomly assigned to either a fish oil group (600 mg per day) or a control group (1000 mg of coconut oil per day) for 8 weeks. Results showed no significant difference in the percent change of leptin over the 8 week supplementation period for either group (15.3±31.9 for fish oil group, 7.83±27 for control group; p=0.763). The percent change in NO was similarly not significantly altered in either group (-1.97±22 decline in fish oil group, 11.8±53.9 in control group; p=0.960). Likewise, the percent change in superoxide dismutase for each group was not significant following 8 weeks of supplementation (fish oil group: 11.94±20.94; control group: 11.8±53.9; p=0.362). The Pearson correlation co-efficient comparing the percent change of both leptin and NO was r2= -0.251 demonstrating a mildly negative, albeit insignificant, relationship between these factors. Together, these findings suggest that daily supplementation with 600 mg omega 3 in healthy females is not beneficial for improving these cardiovascular risk markers. Future studies in this area should include male subjects as well as overweight subjects with larger doses of fish oil that are equivalent to three or more servings per week. The importance of gender cannot be underestimated since estrogen has protective effects in the vasculature of females that may have masked any further protective effects of the fish oil. In addition, overweight individuals are often leptin-resistant and develop impaired vasodilation resulting from superoxide-mediated scavenging of nitric oxide. Therefore, the reported antioxidant and weight loss properties of omega 3 supplementation may greatly benefit overweight individuals.
ContributorsAlanbagy, Samer (Author) / Sweazea, Karen (Thesis advisor) / Johnston, Carol (Committee member) / Shepard, Christina (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2014
153648-Thumbnail Image.png
Description
The effects of iron and chromium blood concentrations have been linked to blood glucose control in diabetics. It is suggested that iron causes oxidative stress in the beta cells of the pancreas and adipocytes creating insulin insufficiency and resistance. Chromium is believed to increase the action of insulin

The effects of iron and chromium blood concentrations have been linked to blood glucose control in diabetics. It is suggested that iron causes oxidative stress in the beta cells of the pancreas and adipocytes creating insulin insufficiency and resistance. Chromium is believed to increase the action of insulin through its biologically active molecule chromodulin. Both of these mechanisms are not clear. This 20 week case study tests the feasibility of combining iron depletion therapy followed by chromium supplementation to improve insulin sensitivity. This single case study followed a protocol of two blood donations separated by eight weeks followed by chromium supplementation of 250 µg of chromium picolinate once a day four weeks after the second blood donation. Fasting blood draws were taken at baseline, post blood draws and pre and post chromium supplementation. Results were not promising for the first hypothesis of lowering HbA1c, but the results were promising for the second hypothesis of improving insulin sensitivity by lowering the HOMA score.
ContributorsJarrett, Nia (Author) / Johnston, Carol (Thesis advisor) / Lespron, Christy (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created2015
155257-Thumbnail Image.png
Description
Birds have shown promise as models of diabetes due to health and longevity despite naturally high plasma glucose concentrations, a condition which in diabetic humans leads to protein glycation and various complications. Research into mechanisms that protect birds from high plasma glucose have shown that some species of birds have

Birds have shown promise as models of diabetes due to health and longevity despite naturally high plasma glucose concentrations, a condition which in diabetic humans leads to protein glycation and various complications. Research into mechanisms that protect birds from high plasma glucose have shown that some species of birds have naturally low levels of protein glycation. Some hypothesize a diet rich in carotenoids and other antioxidants protects birds from protein glycation and oxidative damage. There is little research, however, into the amount of protein glycation in birds of prey, which consume a high protein, high fat diet. No studies have examined the potential link between the diet of carnivorous birds and protein glycation. The overall purpose of this study was to evaluate whether birds of prey have higher protein glycation given their high protein, high fat diet in comparison to chickens, which consume a diet higher in carbohydrates. This was accomplished through analyses of serum samples from select birds of prey (bald eagle, red-tailed hawk, barred owl, great horned owl). Serum samples were obtained from The Raptor Center at the University of Minnesota where the birds of prey consumed high protein, high fat, non-supplemented diets that consisted of small animals and very little to no carbohydrate. Serum was also obtained from one chicken for a control, which consumed a higher carbohydrate and antioxidant-rich diet. Glucose, native albumin glycation and antioxidant concentrations (uric acid, vitamin E, retinol and several carotenoids) of each sample was measured. Statistical analyses showed significant between group differences in percent protein glycation amongst the birds of prey species. Glycation was significantly higher (p < 0.001) in bald eagles (23.67 ± 1.90%) and barred owls (24.28 ± 1.43%) compared to red-tailed hawks (14.31 ± 0.63%). Percent glycation was higher in all birds of prey compared to the chicken sample and literature values for chicken albumin glycation. Levels of the carotenoid lutein were significantly higher in bald eagles and barred owls compared to great horned owls and red-tailed hawks and the carotenoids beta-cryptoxanthin and beta-carotene were significantly greater in bald eagles compared to red-tailed hawks and great horned owls.
ContributorsIngram, Tana (Author) / Sweazea, Karen (Thesis advisor) / Johnston, Carol (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2017
155482-Thumbnail Image.png
Description
There are limited studies exploring the direct relationship between coconut oil and cholesterol concentrations. Research in animals and a few intervention trials suggest that coconut oil increases the good cholesterol (high density lipoprotein, HDL) and thus reduces the risk of cardiovascular disease. Preliminary research at Arizona State University (ASU) has

There are limited studies exploring the direct relationship between coconut oil and cholesterol concentrations. Research in animals and a few intervention trials suggest that coconut oil increases the good cholesterol (high density lipoprotein, HDL) and thus reduces the risk of cardiovascular disease. Preliminary research at Arizona State University (ASU) has found similar results using coconut oil as a placebo, positive changes in HDL cholesterol concentrations were observed.

The goal of this randomized, double blind, parallel two arm study, was to further examine the beneficial effects of a 2g supplement of coconut oil taken each day for 8 weeks on cholesterol concentrations, specifically the total cholesterol to HDL cholesterol ratio, compared to placebo.

Forty-two healthy adults between 18-40 years of age, exercising less than 150 minutes each week, non smoking, BMI between 22-35 and not taking any medications that could effect blood lipids were recruited from the ListServs at ASU. Participants were randomized to receive either a placebo capsule of flour or a coconut oil capsule (Puritan’s Pride brand, coconut oil softgels, 2g each) and instructed to take the capsules for 8 weeks.

Results indicated no significant change in total cholesterol to HDL ratio between baseline and 8 weeks in the coconut oil and placebo groups (p=0.369), no significant change in HDL (p=0.648), no change in LDL (p=0.247), no change in total cholesterol (p=0.216), and no change in triglycerides (p=0.369).

Blood lipid concentrations were not significantly altered by a 2g/day dosage of coconut oil over the course of 8 weeks in healthy adults, and specifically the total cholesterol to HDL ratio did not change or improve.
ContributorsShedden, Rachel (Author) / Johnston, Carol (Thesis advisor) / Lespron, Christy (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2017