This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

149875-Thumbnail Image.png
Description
ABSTRACT The Phoenix Four Rivers Flora is an inventory of all the vascular plants growing along the Salt, Gila, New and Agua Fria Rivers, and their tributaries in the Phoenix Metropolitan Area during the years of the study (2009-2011). This floristic inventory documents the plant species and habitats

ABSTRACT The Phoenix Four Rivers Flora is an inventory of all the vascular plants growing along the Salt, Gila, New and Agua Fria Rivers, and their tributaries in the Phoenix Metropolitan Area during the years of the study (2009-2011). This floristic inventory documents the plant species and habitats that exist currently in the project area, which has changed dramatically from previous times. The data gathered by the flora project thus not only documents how the current flora has been altered by urbanization, but also will provide a baseline for future ecological studies. The Phoenix Metropolitan Area is a large urbanized region in the Sonoran Desert of Central Arizona, and its rivers are important for the region for many uses including flood control, waste water management, recreation, and gravel mining. The flora of the rivers and tributaries within the project area is extremely diverse; the heterogeneity of the systems being caused by urbanization, stream modification for flood control, gravel mining, and escaped exotic species. Hydrological changes include increased runoff in some areas because of impermeable surfaces (e.g. paved streets) and decreased runoff in other areas due to flood retention basins. The landscaping trade has introduced exotic plant species that have escaped into urban washes and riparian areas. Many of these have established with native species to form novel plant associations.
ContributorsJenke, Darin (Author) / Landrum, Leslie R. (Committee member) / Pigg, Kathleen B. (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2011
156011-Thumbnail Image.png
Description
A floristic analysis is essential to understanding the current diversity and structure

of community associations of plants in a region. Also, a region’s floristic analysis is key not only to investigating their geographical origin(s) but is necessary to their management and protection as a reservoir of greater biodiversity. With an area

A floristic analysis is essential to understanding the current diversity and structure

of community associations of plants in a region. Also, a region’s floristic analysis is key not only to investigating their geographical origin(s) but is necessary to their management and protection as a reservoir of greater biodiversity. With an area of 2,250,000 square kilometers, the country of Saudi Arabia covers almost four-fifths of the Arabian Peninsula. Efforts to document information on the flora of Saudi Arabia began in the 1700s and have resulted in several comprehensive publications over the last 25 years. There is no doubt that these studies have helped both the community of scientific researchers as well as the public to gain knowledge about the number of species, types of plants, and their distribution in Saudi Arabia. However, there has been no effort to use digital technology to make the data contained in various Saudi herbarium collections easily accessible online for research and teaching purposes. This research project aims to develop a “virtual flora” portal for the vascular plants of Saudi Arabia. Based on SEINet and the Symbiota software used to power it, a preliminary website portal was established to begin an effort to make information of Saudi Arabia’s flora available on the world- wide web. Data comprising a total of 12,834 specimens representing 175 families were acquired from different organizations and used to create a database for the designed website. After analyzing the data, the Fabaceae family (“legumes”) was identified as a largest family and chosen for further analysis. This study contributes to help scientific researchers, government workers and the general public to have easy, unlimited access to the plant information for a variety of purposes.
ContributorsAlbediwi, Albatool (Author) / Wojciechowski, Martin (Thesis advisor) / Franz, Nico (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2017
156911-Thumbnail Image.png
Description
Baseline community composition data provides a snapshot in time that allows changes in composition to be monitored more effectively and can inform best practices. This study examines Arizona Upland plant community composition of the Sonoran Desert through three different lenses: floristic inventory, and fire and reseeding effects.

A floristic inventory was

Baseline community composition data provides a snapshot in time that allows changes in composition to be monitored more effectively and can inform best practices. This study examines Arizona Upland plant community composition of the Sonoran Desert through three different lenses: floristic inventory, and fire and reseeding effects.

A floristic inventory was conducted at Cave Creek Regional Park (CCRP), Maricopa County, AZ. One hundred fifty-four taxa were documented within Park boundaries, including 148 species and six infraspecific taxa in 43 families. Asteraceae, Boraginaceae, and Fabaceae accounted for 40% of documented species and annuals accounted for 56% of documented diversity.

Fire effects were studied at three locations within McDowell Sonoran Preserve (MSP), Scottsdale, AZ. These fires occurred throughout the 1990s and recovered naturally. Fire and reseeding effects were studied at the site of a 2005 fire within CCRP that was reseeded immediately following the fire.

Two questions underlie the study regarding fire and reseeding effects: 1) How did fire and reseeding affect the cover and diversity of the plant communities? 2) Is there a difference in distribution of cover between treatments for individual species or growth habits? To address these questions, I compared burned and adjacent unburned treatments at each site, with an additional reseeded treatment added at CCRP.

MSP sites revealed overall diversity and cover was similar between treatments, but succulent cover was significantly reduced, and subshrub cover was significantly greater in the burn treatment. Seventeen species showed significant difference in distribution of cover between treatments.

The CCRP reseeded site revealed 11 of 28 species used in the seed mix persist 12 years post-fire. The reseeded treatment showed greater overall diversity than burned and unburned treatments. Succulent and shrub cover were significantly reduced by fire while subshrub cover was significantly greater in the reseeded treatment. Sixteen species showed significant difference in distribution of cover between treatments.

Fire appears to impact plant community composition across Arizona Upland sites. Choosing species to include in seed mixes for post-fire reseeding, based on knowledge of pre-fire species composition and individual species’ fire responses, may be a useful tool to promote post-fire plant community recovery.
ContributorsBarron, Kara Lynn (Author) / Pigg, Kathleen B (Thesis advisor) / Stromberg, Juliet (Thesis advisor) / Makings, Elizabeth (Committee member) / McCue, Kimberlie (Committee member) / Arizona State University (Publisher)
Created2018
154370-Thumbnail Image.png
Description
It’s no secret that wetlands have dramatically declined in the arid and semiarid American West, yet the small number of wetlands that persist provide vital ecosystem services. Ciénega is a term that refers to a freshwater arid-land wetland. Today, even in areas where ciénegas are prominent they occupy less than

It’s no secret that wetlands have dramatically declined in the arid and semiarid American West, yet the small number of wetlands that persist provide vital ecosystem services. Ciénega is a term that refers to a freshwater arid-land wetland. Today, even in areas where ciénegas are prominent they occupy less than 0.1% of the landscape. This investigation assesses the distribution of vascular plant species within and among ciénegas and address linkages between environmental factors and wetland plant communities. Specifically, I ask: 1) What is the range of variability among ciénegas, with respect to wetland area, soil organic matter, plant species richness, and species composition? 2) How is plant species richness influenced locally by soil moisture, soil salinity, and canopy cover, and regionally by elevation, flow gradient (percent slope), and temporally by season? And 3) Within ciénegas, how do soil moisture, soil salinity, and canopy cover influence plant species community composition? To answer these questions I measured environmental variables and quantified vegetation at six cienegas within the Santa Cruz Watershed in southern Arizona over one spring and two post-monsoon periods. Ciénegas are highly variable with respect to wetland area, soil organic matter, plant species richness, and species composition. Therefore, it is important to conserve the ciénega landscape as opposed to conserving a single ciénega. Plant species richness is influenced negatively by soil moisture, positively by soil salinity, elevation, and flow gradient (percent slope), and is greater during the post-monsoon season. Despite concerns about woody plant encroachment reducing biodiversity, my investigation suggests canopy cover has no significant influence on ciénega species richness. Plant species community composition is structured by water availability at all ciénegas, which is consistent with the key role water availability plays in arid and semiarid regions. Effects of canopy and salinity structuring community composition are site specific. My investigation has laid the groundwork for ciénega conservation by providing baseline information of the ecology of these unique and threatened systems. The high variability of ciénega wetlands and the rare species they harbor combined with the numerous threats against them and their isolated occurrences makes these vanishing communities high priority for conservation.
ContributorsWolkis, Dustin (Author) / Stromberg, Juliet C. (Thesis advisor) / Hall, Sharon (Committee member) / Salywon, Andrew (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2016
155201-Thumbnail Image.png
Description
Throughout the Southwest, complex geology and physiography concomitant with climatic variability contribute to diverse stream hydrogeomorphologies. Many riparian plant species store their seeds in soil seed banks, and germinate in response to moisture pulses, but the climatic controls of this response are poorly understood. To better understand the

Throughout the Southwest, complex geology and physiography concomitant with climatic variability contribute to diverse stream hydrogeomorphologies. Many riparian plant species store their seeds in soil seed banks, and germinate in response to moisture pulses, but the climatic controls of this response are poorly understood. To better understand the ecological implications of a changing climate on riparian plant communities, I investigated seed bank responses to seasonal temperature patterns and to stream hydrogeomorphic type. I asked the following questions: Are there distinct suites of warm and cool temperature germinating species associated with Southwestern streams; how do they differ between riparian and terrestrial zones, and between ephemeral and perennial streams? How does alpha diversity of the soil seed bank differ between streams with ephemeral, intermittent, and perennial flow, and between montane and basin streams? Do streams with greater elevational change have higher riparian zone seed bank beta-diversity? Does nestedness or turnover contribute more to within stream beta-diversity?

I collected soil samples from the riparian and terrestrial zones of 21 sites, placing them in growth chambers at one of two temperature regimes, and monitoring emergence of seedlings for 12 weeks. Results showed an approximately equal number of warm and cool specialists in both riparian and terrestrials zones; generalists also were abundant, particularly in the riparian zone. The number of temperature specialists and generalists in the riparian zones did not differ significantly between perennial headwater and ephemeral stream types. In montane streams, alpha diversity of the soil seed bank was highest for ephemeral reaches; in basin streams the intermittent and perennial reaches had higher diversity. Spatial turnover was primarily responsible for within stream beta-diversity—reaches had different species assemblages. The large portion of temperature specialists found in riparian seed banks indicates that even with available moisture riparian zone plant community composition will likely be impacted by changing temperatures. However, the presence of so many temperature generalists in the riparian zones suggests that some component of the seed bank is adapted to variable conditions and might offer resilience in a changing climate. Study results confirm the importance of conserving multiple hydrogeomorphic reach types because they support unique species assemblages.
ContributorsSetaro, Danika (Author) / Stromberg, Juliet (Thesis advisor) / Franklin, Janet (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2016
Description
Urban wetland ecosystems provide myriad ecosystem services and are shaped by diverse social and ecological factors. In rapidly urbanizing parts of the desert Southwest, wetlands are especially vital. Across less than 60 km as it enters the Phoenix area, the Salt River is dammed, diverted, re-filled, clear-cut, restored, and ignored.

Urban wetland ecosystems provide myriad ecosystem services and are shaped by diverse social and ecological factors. In rapidly urbanizing parts of the desert Southwest, wetlands are especially vital. Across less than 60 km as it enters the Phoenix area, the Salt River is dammed, diverted, re-filled, clear-cut, restored, and ignored. This study documents how animal and plant communities in three perennially inundated reaches of the river changed over a decade under different social-ecological pressures. One wetland in the urban core is restored, another formed accidentally by human infrastructure, and the last is managed on the urban periphery. Surveys conducted since 2012 used point-count surveys to assess bird communities and visual encounter surveys to assess reptiles and amphibians. Plant communities were surveyed in 2012 and 2022 using cover classes. Between 2012 and 2022, accidental and restored wetlands close to the urban core displayed an increase in plant abundance, largely consisting of introduced species. While all sites saw an increase in plant species considered invasive by land management groups, both urban wetlands saw an increase in regionally native species, including plants that are culturally significant to local Indigenous groups. Reptile communities declined in richness and abundance in both urban sites, but birds grew in abundance and richness at the urban restored site while not changing at the urban accidental wetland. The non-urban site saw stable populations of both birds and herpetofauna. These trends in biotic communities reveal ecological tradeoffs under different management strategies for urban wetlands. These findings also create a portrait of wetland communities along a rapidly urbanizing arid river. As the Salt River watershed becomes more urbanized, it is important to establish a more empathetic and informed relationship between its plant and animal—including human—residents. To this end, these data were incorporated in a series of handmade paper artworks, crafted from the most abundant wetland plant species found at the study sites, harvested alongside local land management efforts. These artworks examine the potential of four common cosmopolitan wetland plants for papermaking, revealing the potential to align ecosystem management efforts with both materials production and fine arts. By using relief printmaking to visualize long-term ecological data, I explored an alternative, more creative and embodied way to engage with and visualize urban wetland communities. This alternate mode of engagement can complement ecological management and research to diversify disciplines and participants engaged with understanding and living alongside urban wetlands.
ContributorsRamsey-Wiegmann, Luke Dawson (Author) / Childers, Daniel L (Thesis advisor) / Makings, Elizabeth (Committee member) / Bateman, Heather (Committee member) / Arizona State University (Publisher)
Created2023
171615-Thumbnail Image.png
Description
The nests of the Curve-billed Thrasher (Toxostoma curvirostre) were studied across the greater Phoenix area from 2020-2022 in order to assess any significant relationships between their composition and the composition of their environment. Nests were collected and measured, and the vegetation was surveyed to 100 m for potential nest material

The nests of the Curve-billed Thrasher (Toxostoma curvirostre) were studied across the greater Phoenix area from 2020-2022 in order to assess any significant relationships between their composition and the composition of their environment. Nests were collected and measured, and the vegetation was surveyed to 100 m for potential nest material type. In the lab, nests were separated by material type and tallied. The dense cores of the nests received a 100-piece sampling, with the first hundred pieces plucked from the structure, sorted by type, and massed. Ordinary least squares (OLS) and binomial regression analyses were performed on the body tallies and their corresponding site tallies. Core material weights and their corresponding site tallies only received OLS regression analyses. Beta regression analyses were also performed on the mass proportions of core samples and their corresponding environmental tallies. OLS regression yielded a significant relationship between the spiny body material tally and its site tallies at 25 and 100 m. While failing the assumption of normality, the tally of barrel cactus in a nest body yielded significant p-values in OLS and binomial regression, as well as the Spearman’s correlation test, supporting a strong correlation with the 100m site tally. The tally of anthropogenic materials and the distance to the nearest man-made structure failed the test of normality, but yielded significant p-values in binomial regression and the Spearman’s correlation test. OLS regression of log anthropogenic tally and log distance to nearest structure failed normality but yielded a significant p-value as well. In beta regression analyses, only the spiny core mass proportion yielded a significant relationship at the 100 m site tally.
ContributorsMotta, Anthony Joseph (Author) / Taylor, Jay (Thesis advisor) / Makings, Elizabeth (Committee member) / Puente, Raul (Committee member) / Arizona State University (Publisher)
Created2022
168820-Thumbnail Image.png
Description
Bouteloua eriopoda (Torr.) Torr., also known as black grama, is a perennial bunchgrass native to arid and semiarid ecosystems in the southwestern region of North America. As a result of anthropogenic climate change, this region is predicted to increase in aridity and experience more frequent extreme drought and extreme wet

Bouteloua eriopoda (Torr.) Torr., also known as black grama, is a perennial bunchgrass native to arid and semiarid ecosystems in the southwestern region of North America. As a result of anthropogenic climate change, this region is predicted to increase in aridity and experience more frequent extreme drought and extreme wet years. This change in precipitation will no doubt affect black grama; however, few studies have investigated how the specific structural components of this grass will respond. The purpose of this study was to examine the effects of years since start of treatment and annual precipitation amount on tiller and stolon densities, and to test for interaction between the two predictor variables. Additionally, the effects of annual precipitation on ramets and axillary buds were investigated. By using 36 experimental plots that have been receiving drought, irrigated, or control treatments since 2007, tiller density was the most responsive component to both annual precipitation amount and years since start of treatment. Years since start of treatment and annual precipitation amount also had a statistically significant interaction, meaning the effect of precipitation amount on tiller density differs depending on how many years have passed since treatments began. Stolon density was the second-most responsive component; the predictor variables were found to have no statistically significant interaction, meaning their effects on stolon density are independent of one another. Ramet density, ramets per stolon, and axillary bud metabolic activity and density were found to be independent of annual precipitation amount for 2021. The results indicate that multiple-year extreme wet and multiple-year extreme dry conditions in the Southwest will both likely reduce tiller and stolon densities in black grama patches. Prolonged drought conditions reduced tiller and stolon production in black grama because of negative legacies from previous years. Reduced production during prolonged wet conditions could be due to increased competition between adjacent plants.
ContributorsSutter, Bryce Madison (Author) / Sala, Osvaldo E (Thesis advisor) / Makings, Elizabeth (Committee member) / Wojciechowski, Martin F (Committee member) / Arizona State University (Publisher)
Created2022