This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

156911-Thumbnail Image.png
Description
Baseline community composition data provides a snapshot in time that allows changes in composition to be monitored more effectively and can inform best practices. This study examines Arizona Upland plant community composition of the Sonoran Desert through three different lenses: floristic inventory, and fire and reseeding effects.

A floristic inventory was

Baseline community composition data provides a snapshot in time that allows changes in composition to be monitored more effectively and can inform best practices. This study examines Arizona Upland plant community composition of the Sonoran Desert through three different lenses: floristic inventory, and fire and reseeding effects.

A floristic inventory was conducted at Cave Creek Regional Park (CCRP), Maricopa County, AZ. One hundred fifty-four taxa were documented within Park boundaries, including 148 species and six infraspecific taxa in 43 families. Asteraceae, Boraginaceae, and Fabaceae accounted for 40% of documented species and annuals accounted for 56% of documented diversity.

Fire effects were studied at three locations within McDowell Sonoran Preserve (MSP), Scottsdale, AZ. These fires occurred throughout the 1990s and recovered naturally. Fire and reseeding effects were studied at the site of a 2005 fire within CCRP that was reseeded immediately following the fire.

Two questions underlie the study regarding fire and reseeding effects: 1) How did fire and reseeding affect the cover and diversity of the plant communities? 2) Is there a difference in distribution of cover between treatments for individual species or growth habits? To address these questions, I compared burned and adjacent unburned treatments at each site, with an additional reseeded treatment added at CCRP.

MSP sites revealed overall diversity and cover was similar between treatments, but succulent cover was significantly reduced, and subshrub cover was significantly greater in the burn treatment. Seventeen species showed significant difference in distribution of cover between treatments.

The CCRP reseeded site revealed 11 of 28 species used in the seed mix persist 12 years post-fire. The reseeded treatment showed greater overall diversity than burned and unburned treatments. Succulent and shrub cover were significantly reduced by fire while subshrub cover was significantly greater in the reseeded treatment. Sixteen species showed significant difference in distribution of cover between treatments.

Fire appears to impact plant community composition across Arizona Upland sites. Choosing species to include in seed mixes for post-fire reseeding, based on knowledge of pre-fire species composition and individual species’ fire responses, may be a useful tool to promote post-fire plant community recovery.
ContributorsBarron, Kara Lynn (Author) / Pigg, Kathleen B (Thesis advisor) / Stromberg, Juliet (Thesis advisor) / Makings, Elizabeth (Committee member) / McCue, Kimberlie (Committee member) / Arizona State University (Publisher)
Created2018
155201-Thumbnail Image.png
Description
Throughout the Southwest, complex geology and physiography concomitant with climatic variability contribute to diverse stream hydrogeomorphologies. Many riparian plant species store their seeds in soil seed banks, and germinate in response to moisture pulses, but the climatic controls of this response are poorly understood. To better understand the

Throughout the Southwest, complex geology and physiography concomitant with climatic variability contribute to diverse stream hydrogeomorphologies. Many riparian plant species store their seeds in soil seed banks, and germinate in response to moisture pulses, but the climatic controls of this response are poorly understood. To better understand the ecological implications of a changing climate on riparian plant communities, I investigated seed bank responses to seasonal temperature patterns and to stream hydrogeomorphic type. I asked the following questions: Are there distinct suites of warm and cool temperature germinating species associated with Southwestern streams; how do they differ between riparian and terrestrial zones, and between ephemeral and perennial streams? How does alpha diversity of the soil seed bank differ between streams with ephemeral, intermittent, and perennial flow, and between montane and basin streams? Do streams with greater elevational change have higher riparian zone seed bank beta-diversity? Does nestedness or turnover contribute more to within stream beta-diversity?

I collected soil samples from the riparian and terrestrial zones of 21 sites, placing them in growth chambers at one of two temperature regimes, and monitoring emergence of seedlings for 12 weeks. Results showed an approximately equal number of warm and cool specialists in both riparian and terrestrials zones; generalists also were abundant, particularly in the riparian zone. The number of temperature specialists and generalists in the riparian zones did not differ significantly between perennial headwater and ephemeral stream types. In montane streams, alpha diversity of the soil seed bank was highest for ephemeral reaches; in basin streams the intermittent and perennial reaches had higher diversity. Spatial turnover was primarily responsible for within stream beta-diversity—reaches had different species assemblages. The large portion of temperature specialists found in riparian seed banks indicates that even with available moisture riparian zone plant community composition will likely be impacted by changing temperatures. However, the presence of so many temperature generalists in the riparian zones suggests that some component of the seed bank is adapted to variable conditions and might offer resilience in a changing climate. Study results confirm the importance of conserving multiple hydrogeomorphic reach types because they support unique species assemblages.
ContributorsSetaro, Danika (Author) / Stromberg, Juliet (Thesis advisor) / Franklin, Janet (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2016
168820-Thumbnail Image.png
Description
Bouteloua eriopoda (Torr.) Torr., also known as black grama, is a perennial bunchgrass native to arid and semiarid ecosystems in the southwestern region of North America. As a result of anthropogenic climate change, this region is predicted to increase in aridity and experience more frequent extreme drought and extreme wet

Bouteloua eriopoda (Torr.) Torr., also known as black grama, is a perennial bunchgrass native to arid and semiarid ecosystems in the southwestern region of North America. As a result of anthropogenic climate change, this region is predicted to increase in aridity and experience more frequent extreme drought and extreme wet years. This change in precipitation will no doubt affect black grama; however, few studies have investigated how the specific structural components of this grass will respond. The purpose of this study was to examine the effects of years since start of treatment and annual precipitation amount on tiller and stolon densities, and to test for interaction between the two predictor variables. Additionally, the effects of annual precipitation on ramets and axillary buds were investigated. By using 36 experimental plots that have been receiving drought, irrigated, or control treatments since 2007, tiller density was the most responsive component to both annual precipitation amount and years since start of treatment. Years since start of treatment and annual precipitation amount also had a statistically significant interaction, meaning the effect of precipitation amount on tiller density differs depending on how many years have passed since treatments began. Stolon density was the second-most responsive component; the predictor variables were found to have no statistically significant interaction, meaning their effects on stolon density are independent of one another. Ramet density, ramets per stolon, and axillary bud metabolic activity and density were found to be independent of annual precipitation amount for 2021. The results indicate that multiple-year extreme wet and multiple-year extreme dry conditions in the Southwest will both likely reduce tiller and stolon densities in black grama patches. Prolonged drought conditions reduced tiller and stolon production in black grama because of negative legacies from previous years. Reduced production during prolonged wet conditions could be due to increased competition between adjacent plants.
ContributorsSutter, Bryce Madison (Author) / Sala, Osvaldo E (Thesis advisor) / Makings, Elizabeth (Committee member) / Wojciechowski, Martin F (Committee member) / Arizona State University (Publisher)
Created2022