This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 15
Filtering by

Clear all filters

168407-Thumbnail Image.png
Description
A Compact Linear Fresnel Reflector (CLFR) is a simple, cost-effective, and scalable option for generating solar power by concentrating the sun rays. To make a most feasible application, design parameters of the CLFR, such as solar concentrator design parameters, receiver design parameters, heat transfer, power block parameters, etc., should be

A Compact Linear Fresnel Reflector (CLFR) is a simple, cost-effective, and scalable option for generating solar power by concentrating the sun rays. To make a most feasible application, design parameters of the CLFR, such as solar concentrator design parameters, receiver design parameters, heat transfer, power block parameters, etc., should be optimized to achieve optimum efficiency. Many researchers have carried out modeling and optimization of CLFR with various numerical or analytical methods. However, often computational time and cost are significant in these existing approaches. This research attempts to address this issue by proposing a novel computational approach with the help of increased computational efficiency and machine learning. The approach consists of two parts: the algorithm and the machine learning model. The algorithm has been created to fulfill the requirement of the Monte Carlo Ray tracing method for CLFR collector simulation, which is a simplified version of the conventional ray-tracing method. For various configurations of the CLFR system, optical losses and optical efficiency are calculated by employing these design parameters, such as the number of mirrors, mirror length, mirror width, space between adjacent mirrors, and orientation angle of the CLFR system. Further, to reduce the computational time, a machine learning method is used to predict the optical efficiency for the various configurations of the CLFR system. This entire method is validated using an existing approach (SolTrace) for the optical losses and optical efficiency of a CLFR system. It is observed that the program requires 6.63 CPU-hours of computational time are required by the program to calculate efficiency. In contrast, the novel machine learning approach took only seconds to predict the optical efficiency with great accuracy. Therefore, this method can be used to optimize a CLFR system based on the location and land configuration with reduced computational time. This will be beneficial for CLFR to be a potential candidate for concentrating solar power option.
ContributorsLunagariya, Shyam (Author) / Phelan, Patrick (Thesis advisor) / Kwon, Beomjin (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021
168364-Thumbnail Image.png
Description
Laser powder bed fusion (LPBF) additive manufacturing (AM) has received widespread attention due to its ability to produce parts with complicated design and better surface finish compared to other additive techniques. LPBF uses a laser heat source to melt layers of powder particles and manufactures a part based on the

Laser powder bed fusion (LPBF) additive manufacturing (AM) has received widespread attention due to its ability to produce parts with complicated design and better surface finish compared to other additive techniques. LPBF uses a laser heat source to melt layers of powder particles and manufactures a part based on the CAD design. This process can benefit significantly through computational modeling. The objective of this thesis was to understand the thermal transport, and fluid flow phenomena of the process, and to optimize the main process parameters such as laser power and scan speed through a combination of computational, experimental, and statistical analysis. A multi-physics model was built using to model temperature profile, bead geometry and elemental evaporation in powder bed process using a non-gaussian interaction between laser heat source and metallic powder. Owing to the scarcity of thermo-physical properties of metallic powders in literature, thermal conductivity, diffusivity, and heat capacity was experimentally tested up to a temperature of 1400 degrees C. The values were used in the computational model, which improved the results significantly. The computational work was also used to assess the impact of fluid flow around melt pool. Dimensional analysis was conducted to determine heat transport mode at various laser power/scan speed combinations. Convective heat flow proved to be the dominant form of heat transfer at higher energy input due to violent flow of the fluid around the molten region, which can also create keyhole effect. The last part of the thesis focused on gaining useful information about several features of the bead area such as contact angle, porosity, voids and melt pool that were obtained using several combinations of laser power and scan speed. These features were quantified using process learning, which was then used to conduct a full factorial design that allows to estimate the effect of the process parameters on the output features. Both single and multi-response analysis are applied to analyze the output response. It was observed that laser power has more influential effect on all the features. Multi response analysis showed 150 W laser power and 200 mm/s produced bead with best possible features.
ContributorsAhsan, Faiyaz (Author) / Ladani, Leila (Thesis advisor) / Razmi, Jafar (Committee member) / Kwon, Beomjin (Committee member) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021
168458-Thumbnail Image.png
Description
Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst

Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst devices, magnetic shielding, etc. For the engineering of the cellular foam architectures, closed-form models that can be used to predict the mechanical and thermal properties of foams are highly desired especially for the recently developed ultralight weight shellular architectures. Herein, for the first time, a novel packing three-dimensional (3D) hollow pentagonal dodecahedron (HPD) model is proposed to simulate the cellular architecture with hollow struts. An electrochemical deposition process is utilized to manufacture the metallic hollow foam architecture. Mechanical and thermal testing of the as-manufactured foams are carried out to compare with the HPD model. Timoshenko beam theory is utilized to verify and explain the derived power coefficient relation. Our HPD model is proved to accurately capture both the topology and the physical properties of hollow stochastic foam. Understanding how the novel HPD model packing helps break the conventional impression that 3D pentagonal topology cannot fulfill the space as a representative volume element. Moreover, the developed HPD model can predict the mechanical and thermal properties of the manufactured hollow metallic foams and elucidating of how the inevitable manufacturing defects affect the physical properties of the hollow metallic foams. Despite of the macro-scale stochastic foam architecture, nano gradient gyroid lattices are studied using Molecular Dynamics (MD) simulation. The simulation result reveals that, unlike homogeneous architecture, gradient gyroid not only shows novel layer-by-layer deformation behavior, but also processes significantly better energy absorption ability. The deformation behavior and energy absorption are predictable and designable, which demonstrate its highly programmable potential.
ContributorsDai, Rui (Author) / Nian, Qiong (Thesis advisor) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Liu, Yongming (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
157678-Thumbnail Image.png
Description
One of the fundamental aspects of cellular material design is cell shape selection. Of particular interest is how this selection can be made in the context of a realistic three-dimensional structure. Towards this goal, this work studied the stiffness response of periodic and stochastic lattice structures for the loading conditions

One of the fundamental aspects of cellular material design is cell shape selection. Of particular interest is how this selection can be made in the context of a realistic three-dimensional structure. Towards this goal, this work studied the stiffness response of periodic and stochastic lattice structures for the loading conditions of bending, torsion and tension/compression using commercially available lattice design optimization software. The goal of this computational study was to examine the feasibility of developing a ranking order based on minimum compliance or maximum stiffness for enabling cell selection. A study of stochastic shapes with different seeds was also performed. Experimental compression testing was also performed to validate a sample space of the simulations. The findings of this study suggest that under certain circumstances, stochastic shapes have the potential to generate the highest stiffness-to-weight ratio in the test environments considered.
ContributorsSharma, Raghav (Author) / Bhate, Dhruv (Thesis advisor) / Oswald, Jay (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2019
187523-Thumbnail Image.png
Description
The design of energy absorbing structures is driven by application specific requirements like the amount of energy to be absorbed, maximum transmitted stress that is permissible, stroke length, and available enclosing space. Cellular structures like foams are commonly leveraged in nature for energy absorption and have also found use in

The design of energy absorbing structures is driven by application specific requirements like the amount of energy to be absorbed, maximum transmitted stress that is permissible, stroke length, and available enclosing space. Cellular structures like foams are commonly leveraged in nature for energy absorption and have also found use in engineering applications. With the possibility of manufacturing complex cellular shapes using additive manufacturing technologies, there is an opportunity to explore new topologies that improve energy absorption performance. This thesis aims to systematically understand the relationships between four key elements: (i) unit cell topology, (ii) material composition, (iii) relative density, and (iv) fields; and energy absorption behavior, and then leverage this understanding to develop, implement and validate a methodology to design the ideal cellular structure energy absorber. After a review of the literature in the domain of additively manufactured cellular materials for energy absorption, results from quasi-static compression of six cellular structures (hexagonal honeycomb, auxetic and Voronoi lattice, and diamond, Gyroid, and Schwarz-P) manufactured out of AlSi10Mg and Nylon-12. These cellular structures were compared to each other in the context of four design-relevant metrics to understand the influence of cell design on the deformation and failure behavior. Three new and revised metrics for energy absorption were proposed to enable more meaningful comparisons and subsequent design selection. Triply Periodic Minimal Surface (TPMS) structures were found to have the most promising overall performance and formed the basis for the numerical investigation of the effect of fields on the energy absorption performance of TPMS structures. A continuum shell-based methodology was developed to analyze the large deformation behavior of field-driven variable thickness TPMS structures and validated against experimental data. A range of analytical and stochastic fields were then evaluated that modified the TPMS structure, some of which were found to be effective in enhancing energy absorption behavior in the structures while retaining the same relative density. Combining findings from studies on the role of cell geometry, composition, relative density, and fields, this thesis concludes with the development of a design framework that can enable the formulation of cellular material energy absorbers with idealized behavior.
ContributorsShinde, Mandar (Author) / Bhate, Dhruv (Thesis advisor) / Peralta, Pedro (Committee member) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2023
187476-Thumbnail Image.png
Description
Gallium based room-temperature liquid metals (LMs) have special properties such as metal-like high thermal conductivity while in the liquid state. They are suitable for many potential applications, including thermal interface materials, soft robotics, stretchable electronics, and biomedicine. However, their high density, high surface tension, high reactivity with other metals, and

Gallium based room-temperature liquid metals (LMs) have special properties such as metal-like high thermal conductivity while in the liquid state. They are suitable for many potential applications, including thermal interface materials, soft robotics, stretchable electronics, and biomedicine. However, their high density, high surface tension, high reactivity with other metals, and rapid oxidation restrict their applicability. This dissertation introduces two new types of materials, LM foams, and LM emulsions, that address many of these issues. The formation mechanisms, thermophysical properties, and example applications of the LM foams and emulsions are investigated.LM foams can be prepared by shear mixing the bulk LM in air using an impeller. The surface oxide layer is sheared and internalized into the bulk LM as crumpled oxide flakes during this process. After a critical amount of oxide flakes is internalized, they start to stabilize air bubbles by encapsulating and oxide-bridging. This mechanism enables the fabrication of a LM foam with improved properties and better spreadability. LM emulsions can be prepared by mixing the LM foam with a secondary liquid such as silicone oil (SO). By tuning a few factors such as viscosity of the secondary liquid, composition, and mixing duration, the thermophysical properties of the emulsion can be controlled. These emulsions have a lower density, better spreadability, and unlike the original LM and LM foam, they do not induce corrosion of other metals. LM emulsions can form by two possible mechanisms, first by the secondary liquid replacing air features in the existing foam pores (replacement mechanism) and second by creating additional liquid features within the LM foam (addition mechanism). The latter mechanism requires significant oxide growth and therefore requires presence of oxygen in the environment. The dominant mechanism can therefore be distinguished by mixing LM foam with the SO in air and oxygen-free environments. Additionally, a comprehensive analysis of foam-to-emulsion density change, multiscale imaging and surface wettability confirm that addition mechanism dominates the emulsion formation. These results provide insight into fundamental processes underlying LM foams and emulsions, and they set up a foundation for preparing LM emulsions with a wide range of fluids and controllable properties.
ContributorsShah, Najam Ul Hassan (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Phelan, Patrick (Committee member) / Green, Matthew D. (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2023
171991-Thumbnail Image.png
Description
This dissertation is focused on the rheology scaling of metal particle reinforced polymermatrix composite made of solid and nanoporous metal powders to enable their continuous 3D printing at high (>60vol%) metal content. There remained a specific knowledge gap on how to predict successful extrusion with densely packed metals by utilizing their suspension melt

This dissertation is focused on the rheology scaling of metal particle reinforced polymermatrix composite made of solid and nanoporous metal powders to enable their continuous 3D printing at high (>60vol%) metal content. There remained a specific knowledge gap on how to predict successful extrusion with densely packed metals by utilizing their suspension melt rheological properties. In the first project, the scaling of the dynamic viscosity of melt-extrudate filaments made of Polylactic acid (PLA) and gas-atomized solid NiCu powders was studied as a function of the metal’s volumetric packing and feedstock pre-mixing strategies and correlated to its extrudability performance, which fitted well with the Krieger-Dougherty analytical model. 63.4 vol% Filaments were produced by employing solution-mixing strategy to reduce sintered part porosity and shrinkage. After sintering, the linear shrinkage dropped by 76% compared to the physical mixing. By characterizing metal particle reinforced polymer matrix composite feedstock via flow-sweep rheology, a distinct extension of shear-thinning towards high shear rates (i.e. 100 s-1) was observed at high metal content – a result that was attributed to the improved wall adhesion. In comparison, physically mixed filament failed to sustain more than 10s-1 shear rate proving that they were prone to wall slippage at a higher shear rate, giving an insight into the onset of extrusion jamming. In the second project, nanoporous copper made out of electroless chemical dealloying was utilized as fillers, because of their unique physiochemical properties. The role of capillary imbibition of polymers into metal nanopores was investigated to understand their effect on density, zero-shear viscosity, and shear thinning. It was observed that, although the polymeric fluid’s transient concentration regulates its wettability, the polymer chain length ultimately dictates its melt rheology, which consequentially facilitates densification of pores during vacuum annealing. Finally, it was demonstrated that higher imbibition into nanopores leads to extrusion failure due to a combined effect of volumetric packing increase and nanoconfinement, providing a deterministic materials design tool to enable continuous 3D printing. The outcome of this study might be beneficial to integrate nanoporous metals into binder-based 3D printing technology to fabricate interdigitated battery electrodes and multifunctional 3D printed electronics.
ContributorsHasib, Amm (Author) / Azeredo, Bruno (Thesis advisor) / Song, Kenan (Thesis advisor) / Nian, Qiong (Committee member) / Kwon, Beomjin (Committee member) / Li, Xiangjia (Committee member) / Arizona State University (Publisher)
Created2022
171388-Thumbnail Image.png
Description
Thermal management of electronics is critical to meet the increasing demand for high power and performance. Thermal interface materials (TIMs) play a key role in dissipating heat away from the microelectronic chip and hence are a crucial component in electronics cooling. Challenges persist with overcoming the interfacial boundary resistance and

Thermal management of electronics is critical to meet the increasing demand for high power and performance. Thermal interface materials (TIMs) play a key role in dissipating heat away from the microelectronic chip and hence are a crucial component in electronics cooling. Challenges persist with overcoming the interfacial boundary resistance and filler particle connectivity in TIMs to achieve thermal percolation while maintaining mechanical compliance. Gallium-based liquid metal (LM) capsules offer a unique set of thermal-mechanical characteristics that make them suitable candidates for high-performance TIM fillers. This dissertation research focuses on resolving the fundamental challenges posed by integration of LM fillers in polymer matrix. First, the rupture mechanics of LM capsules under pressure is identified as a key factor that dictates the thermal connectivity between LM-based fillers. This mechanism of oxide “popping” in LM particle beds independent of the matrix material provides insights in overcoming the particle-particle connectivity challenges. Second, the physical barrier introduced due to the polymer matrix needs to be overcome to achieve thermal percolation. Matrix fluid viscosity impacts thermal transport, with high viscosity uncured matrix inhibiting the thermal bridging of fillers. In addition, incorporation of solid metal co-fillers that react with LM fillers is adopted to facilitate popping of LM oxide in uncured polymer to overcome this matrix barrier. Solid silver metal additives are used to rupture the LM oxide, form inter-metallic alloy (IMC), and act as thermal anchors within the matrix. This results in the formation of numerous thermal percolation paths and hence enhances heat transport within the composite. Further, preserving this microstructure of interconnected multiphase filler system with thermally conductive percolation pathways in a cured polymer matrix is critical to designing high-performing TIM pads. Viscosity of the precursor polymer solution prior to curing plays a major role in the resulting thermal conductivity. A multipronged strategy is developed that synergistically combines reactive solid and liquid fillers, a polymer matrix with low pre-cure viscosity, and mechanical compression during thermal curing. The results of this dissertation aim to provide fundamental insights into the integration of LMs in polymer composites and give design knobs to develop high thermally conducting soft composites.
ContributorsUppal, Aastha (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Kwon, Beomjin (Committee member) / Choksi, Gaurang (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2022
157692-Thumbnail Image.png
Description
Additive manufacturing, also known as 3-dimensional (3-d) printing, is now a rapidly growing manufacturing technique. Innovative and complex designs in various aspects of engineering have called for more efficient manufacturing techniques and 3-d printing has been a perfect choice in that direction. This research investigates the use of additive manufacturing

Additive manufacturing, also known as 3-dimensional (3-d) printing, is now a rapidly growing manufacturing technique. Innovative and complex designs in various aspects of engineering have called for more efficient manufacturing techniques and 3-d printing has been a perfect choice in that direction. This research investigates the use of additive manufacturing in fabricating polymer heat exchangers and estimate their effectiveness as a heat transfer device. Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS) and Stereolithography (SLA) are the three 3-d printing techniques that are explored for their feasibility in manufacturing heat exchangers. The research also explores a triply periodic minimal structure–the gyroid, as a heat exchanger design. The performance of the gyroid heat exchanger was studied using experiments. The main parameters considered for the experiments were heat transfer rate, effectiveness and pressure drop. From the results obtained it can be inferred that using polymers in heat exchangers helps reducing corrosion and fouling problems, but it affects the effectiveness of the heat exchangers. For our design, the maximum effectiveness achieved was 0.1. The pressure drop for the heat exchanger was observed to decrease with an increase in flow rate and the maximum pressure drop measured was 0.88 psi for a flow rate of 5 LPM.
ContributorsDanayat, Swapneel Shailesh (Author) / Phelan, Patrick (Thesis advisor) / Kwon, Beomjin (Committee member) / Azeredo, Bruno (Committee member) / Arizona State University (Publisher)
Created2019
157693-Thumbnail Image.png
Description
Near-field thermal radiation occurs when the distance between two surfaces at different temperatures is less than the characteristic wavelength of thermal radiation. While theoretical studies predict that the near-field radiative heat transfer could exceed Planck’s blackbody limit in the far-field by orders of magnitudes depending on the materials and ga

Near-field thermal radiation occurs when the distance between two surfaces at different temperatures is less than the characteristic wavelength of thermal radiation. While theoretical studies predict that the near-field radiative heat transfer could exceed Planck’s blackbody limit in the far-field by orders of magnitudes depending on the materials and gap distance, experimental measurement of super-Planckian near-field radiative heat flux is extremely challenging in particular at sub-100-nm vacuum gaps and few has been demonstrated. The objective of this thesis is to develop a novel thermal metrology based on AFM bi-material cantilever and experimentally measure near-field thermal radiation.

The experiment setup is completed and validated by measuring the near-field radiative heat transfer between a silica microsphere and a silica substrate and comparing with theoretical calculations. The bi-material AFM cantilever made of SiNi and Au bends with temperature changes, whose deflection is monitored by the position-sensitive diode. After careful calibration, the bi-material cantilever works as a thermal sensor, from which the near-field radiative conductance and tip temperature can be deduced when the silica substrate approaches the silica sphere attached to the cantilever by a piezo stage with a resolution of 1 nm from a few micrometers away till physical contact. The developed novel near-field thermal metrology will be used to measure the near-field radiative heat transfer between the silica microsphere and planar SiC surface as well as nanostructured SiC metasurface. This research aims to enhance the fundamental understandings of radiative heat transfer in the near-field which could lead to advances in microelectronics, optical data storage and thermal systems for energy conversion and thermal management.
ContributorsKondakindi, Ramteja Reddy (Author) / Wang, Liping (Thesis advisor) / Kwon, Beomjin (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2019