This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150443-Thumbnail Image.png
Description
ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms

ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms are included, accounting for the Pauli Exclusion Principle via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 1D Schrödinger-3D-Poisson solution in which the charge distribution of the 2D carriers in the quantization direction is taken as the spatial distribution of the squared envelope functions within the Hartree approximation. The wavefunctions, subband energies, and 2D scattering rates are updated periodically by solving a series of 1D Schrödinger wave equations (SWE) over the real-space domain of the device at fixed time intervals. The electrostatic potential is updated by periodically solving the 3D Poisson equation. Spin-polarized transport is modeled via a spin density-matrix formalism that accounts for D'yakanov-Perel (DP) scattering. Also, the code allows for the easy inclusion of additional scattering mechanisms and structural modifications to devices. As an application of the simulator, the current voltage characteristics of an InGaAs/InAlAs HEMT are simulated, corresponding to nanoscale III-V HEMTs currently being fabricated by Intel Corporation. The comparative effects of various scattering parameters, material properties and structural attributes are investigated and compared with experiments where reasonable agreement is obtained. The spatial evolution of spin-polarized carriers in prototypical Spin Field Effect Transistor (SpinFET) devices is then simulated. Studies of the spin coherence times in quasi-2D structures is first investigated and compared to experimental results. It is found that the simulated spin coherence times for GaAs structures are in reasonable agreement with experiment. The SpinFET structure studied is a scaled-down version of the InGaAs/InAlAs HEMT discussed in this work, in which spin-polarized carriers are injected at the source, and the coherence length is studied as a function of gate voltage via the Rashba effect.
ContributorsTierney, Brian David (Author) / Goodnick, Stephen (Thesis advisor) / Ferry, David (Committee member) / Akis, Richard (Committee member) / Saraniti, Marco (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2011
154695-Thumbnail Image.png
Description
Self-heating degrades the performance of devices in advanced technology nodes. Understanding of self-heating effects is necessary to improve device performance. Heat generation in these devices occurs at nanometer scales but heat transfer is a microscopic phenomena. Hence a multi-scale modeling approach is required to study the self-heating effects. A state

Self-heating degrades the performance of devices in advanced technology nodes. Understanding of self-heating effects is necessary to improve device performance. Heat generation in these devices occurs at nanometer scales but heat transfer is a microscopic phenomena. Hence a multi-scale modeling approach is required to study the self-heating effects. A state of the art Monte Carlo device simulator and the commercially available Giga 3D tool from Silvaco are used in our study to understand the self heating effects. The Monte Carlo device simulator solves the electrical transport and heat generation for nanometer length scales accurately while the Giga 3D tool solves for thermal transport over micrometer length scales. The approach used is to understand the self-heating effects in a test device structure, composed of a heater and a sensor, fabricated and characterized by IMEC. The heater is the Device Under Test(DUT) and the sensor is used as a probe. Therefore, the heater is biased in the saturation region and the sensor is biased in the sub-threshold regime. Both are planar MOSFETs of gate length equal to 22 nm. The simulated I-V characteristics of the sensor match with the experimental behavior at lower applied drain voltages but differ at higher applied biases.

The self-heating model assumes that the heat transport within the device follows Energy Balance model which may not be accurate. To properly study heat transport within the device, a state of the art Monte Carlo device simulator is necessary. In this regard, the Phonon Monte Carlo(PMC) simulator is developed. Phonons are treated as quasi particles that carry heat energy. Like electrons, phonons obey a corresponding Boltzmann Transport Equation(BTE) which can be used to study their transport. The direct solution of the BTE for phonons is possible, but it is difficult to incorporate all scattering mechanisms. In the Monte Carlo based solution method, it is easier to incorporate different relevant scattering mechanisms. Although the Monte Carlo method is computationally intensive, it provides good insight into the physical nature of the transport problem. Hence Monte Carlo based techniques are used in the present work for studying phonon transport. Monte Carlo simulations require calculating the scattering rates for different scattering processes. In the present work, scattering rates for three phonon interactions are calculated from different approaches presented in the literature. Optical phonons are also included in the transport problem. Finally, the temperature dependence of thermal conductivity for silicon is calculated in the range from 100K to 900K and is compared to available experimental data.
ContributorsShaik, Abdul Rawoof (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David (Committee member) / Goodnick, Stephan (Committee member) / Arizona State University (Publisher)
Created2016