This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 7 of 7
Filtering by

Clear all filters

150343-Thumbnail Image.png
Description
In this work, a new method, "Nanobonding" [1,2] is conceived and researched to bond Si-based surfaces, via nucleation and growth of a 2 D silicon oxide SiOxHx interphase connecting the surfaces at the nanoscale across macroscopic domains. Nanobonding cross-bridges two smooth surfaces put into mechanical contact in an O2/H2O mixed

In this work, a new method, "Nanobonding" [1,2] is conceived and researched to bond Si-based surfaces, via nucleation and growth of a 2 D silicon oxide SiOxHx interphase connecting the surfaces at the nanoscale across macroscopic domains. Nanobonding cross-bridges two smooth surfaces put into mechanical contact in an O2/H2O mixed ambient below T <200 °C via arrays of SiOxHx molecules connecting into a continuous macroscopic bonding interphase. Nano-scale surface planarization via wet chemical processing and new spin technology are compared via Tapping Mode Atomic Force Microscopy (TMAFM) , before and after nano-bonding. Nanobonding uses precursor phases, 2D nano-films of beta-cristobalite (beta-c) SiO2, nucleated on Si(100) via the Herbots-Atluri (H-A) method [1]. beta-c SiO2 on Si(100) is ordered and flat with atomic terraces over 20 nm wide, well above 2 nm found in native oxides. When contacted with SiO2 this ultra-smooth nanophase can nucleate and grow domains with cross-bridging molecular strands of hydroxylated SiOx, instead of point contacts. The high density of molecular bonds across extended terraces forms a strong bond between Si-based substrates, nano- bonding [2] the Si and silica. A new model of beta-cristobalite SiO2 with its <110> axis aligned along Si[100] direction is simulated via ab-initio methods in a nano-bonded stack with beta-c SiO2 in contact with amorphous SiO2 (a-SiO2), modelling cross-bridging molecular bonds between beta-c SiO2 on Si(100) and a-SiO2 as during nanobonding. Computed total energies are compared with those found for Si(100) and a-SiO2 and show that the presence of two lattice cells of !-c SiO2 on Si(100) and a-SiO2 lowers energy when compared to Si(100)/ a-SiO2 Shadow cone calculations on three models of beta-c SiO2 on Si(100) are compared with Ion Beam Analysis of H-A processed Si(100). Total surface energy measurements via 3 liquid contact angle analysis of Si(100) after H-A method processing are also compared. By combining nanobonding experiments, TMAFM results, surface energy data, and ab-initio calculations, an atomistic model is derived and nanobonding is optimized. [1] US Patent 6,613,677 (9/2/03), 7,851,365 (12/14/10), [2] Patent Filed: 4/30/09, 10/1/2011
ContributorsWhaley, Shawn D (Author) / Culbertson, Robert J. (Thesis advisor) / Herbots, Nicole (Committee member) / Rez, Peter (Committee member) / Marzke, Robert F (Committee member) / Lindsay, Stuart (Committee member) / Chamberlin, Ralph V (Committee member) / Arizona State University (Publisher)
Created2011
150797-Thumbnail Image.png
Description
In this work, atomic force microscopy (AFM) and time resolved confocal fluorescence microscopy are combined to create a microscopy technique which allows for nanometer resolution topographic and fluorescence imaging. This technique can be applied to any sample which can be immobilized on a surface and which can be observed by

In this work, atomic force microscopy (AFM) and time resolved confocal fluorescence microscopy are combined to create a microscopy technique which allows for nanometer resolution topographic and fluorescence imaging. This technique can be applied to any sample which can be immobilized on a surface and which can be observed by fluorescence microscopy. Biological problems include small molecular systems, such as membrane receptor clusters, where very high optical resolutions need to be achieved. In materials science, fluorescent nanoparticles or other optically active nanostructures can be investigated using this technique. In the past decades, multiple techniques have been developed that yield high resolution optical images. Multiple far-field techniques have overcome the diffraction limit and allow fluorescence imaging with resolutions of few tens of nanometers. On the other hand, near-field microscopy, that makes use of optically active structures much smaller than the diffraction limit can give resolutions around ten nanometers with the possibility to collect topographic information from flat samples. The technique presented in this work reaches resolutions in the nanometer range along with topographic information from the sample. DNA origami with fluorophores attached to it was used to show this high resolution. The fluorophores with 21 nm distance could be resolved and their position on the origami determined within 10 nm. Not only did this work reach a new record in optical resolution in near-field microscopy (5 nm resolution in air and in water), it also gave an insight into the physics that happens between a fluorescent molecule and a dielectric nanostructure, which the AFM tip is. The experiments with silicon tips made a detailed comparison with models possible on the single molecule level, highly resolved in space and time. On the other hand, using silicon nitride and quartz as tip materials showed that effects beyond the established models play a role when the molecule is directly under the AFM tip, where quenching of up to 5 times more efficient than predicted by the model was found.
ContributorsSchulz, Olaf (Author) / Ros, Robert (Thesis advisor) / Levitus, Marcia (Committee member) / Liu, Yan (Committee member) / Lindsay, Stuart (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2012
156743-Thumbnail Image.png
Description
Measurements of the response of superconducting nanowire single photon detector (SNSPD) devices to changes in various forms of input power can be used for characterization of the devices and for probing device-level physics. Two niobium nitride (NbN) superconducting nanowires developed for use as SNSPD devices are embedded as the inductive

Measurements of the response of superconducting nanowire single photon detector (SNSPD) devices to changes in various forms of input power can be used for characterization of the devices and for probing device-level physics. Two niobium nitride (NbN) superconducting nanowires developed for use as SNSPD devices are embedded as the inductive (L) component in resonant inductor/capacitor (LC) circuits coupled to a microwave transmission line. The capacitors are low loss commercial chip capacitors which limit the internal quality factor of the resonators to approximately $Qi = 170$. The resonator quality factor, approximately $Qr = 23$, is dominated by the coupling to the feedline and limits the detection bandwidth to on the order of 1MHz. In our experiments with this first generation device, we measure the response of the SNSPD devices to changes in thermal and optical power in both the time domain and the frequency domain. Additionally, we explore the non-linear response of the devices to an applied bias current. For these nanowires, we find that the band-gap energy is $\Delta_0 \approx 1.1$meV and that the density of states at the Fermi energy is $N_0 \sim 10^{10}$/eV/$\mu$m$^3$.

We present the results of experimentation with a superconducting nanowire that can be operated in two detection modes: i) as a kinetic inductance detector (KID) or ii) as a single photon detector (SPD). When operated as a KID mode in linear mode, the detectors are AC-biased with tones at their resonant frequencies of 45.85 and 91.81MHz. When operated as an SPD in Geiger mode, the resonators are DC biased through cryogenic bias tees and each photon produces a sharp voltage step followed by a ringdown signal at the resonant frequency of the detector. We show that a high AC bias in KID mode is inferior for photon counting experiments compared to operation in a DC-biased SPD mode due to the small fraction of time spent near the critical current with an AC bias. We find a photon count rate of $\Gamma_{KID} = 150~$photons/s/mA in a critically biased KID mode and a photon count rate of $\Gamma_{SPD} = 10^6~$photons/s/mA in SPD mode.

This dissertation additionally presents simulations of a DC-biased, frequency-multiplexed readout of SNSPD devices in Advanced Design System (ADS), LTspice, and Sonnet. A multiplexing factor of 100 is achievable with a total count rate of $>5$MHz. This readout could enable a 10000-pixel array for astronomy or quantum communications. Finally, we present a prototype array design based on lumped element components. An early implementation of the array is presented with 16 pixels in the frequency range of 74.9 to 161MHz. We find good agreement between simulation and experimental data in both the time domain and the frequency domain and present modifications for future versions of the array.
ContributorsSchroeder, Edward, Ph.D (Author) / Mauskopf, Philip (Thesis advisor) / Chamberlin, Ralph (Committee member) / Lindsay, Stuart (Committee member) / Newman, Nathan (Committee member) / Easson, Damien (Committee member) / Arizona State University (Publisher)
Created2018
153678-Thumbnail Image.png
Description
The atomic force microscope (AFM) is capable of directly probing the mechanics of samples with length scales from single molecules to tissues and force scales from pico to micronewtons. In particular, AFM is widely used as a tool to measure the elastic modulus of soft biological samples by collecting force-indentation

The atomic force microscope (AFM) is capable of directly probing the mechanics of samples with length scales from single molecules to tissues and force scales from pico to micronewtons. In particular, AFM is widely used as a tool to measure the elastic modulus of soft biological samples by collecting force-indentation relationships and fitting these to classic elastic contact models. However, the analysis of raw force-indentation data may be complicated by mechanical heterogeneity present in biological systems. An analytical model of an elastic indentation on a bonded two-layer sample was solved. This may be used to account for substrate effects and more generally address experimental design for samples with varying elasticity. This model was applied to two mechanobiology systems of interest. First, AFM was combined with confocal laser scanning fluorescence microscopy and finite element analysis to examine stiffness changes during the initial stages of invasion of MDA-MB-231 metastatic breast cells into bovine collagen I matrices. It was determined that the cells stiffen significantly as they invade, the amount of stiffening is correlated with the elastic modulus of the collagen gel, and inhibition of Rho-associated protein kinase reduces the elastic modulus of the invading cells. Second, the elastic modulus of cancer cell nuclei was investigated ex situ and in situ. It was observed that inhibition of histone deacetylation to facilitate chromatin decondenstation result in significantly more morphological and stiffness changes in cancerous cells compared to normal cells. The methods and results presented here offer novel strategies for approaching biological systems with AFM and demonstrate its applicability and necessity in studying cellular function in physiologically relevant environments.
ContributorsDoss, Bryant Lee (Author) / Ros, Robert (Thesis advisor) / Lindsay, Stuart (Committee member) / Nikkhah, Mehdi (Committee member) / Beckstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2015
155139-Thumbnail Image.png
Description
Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction

Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is αMβ2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering quantitative insights.
ContributorsChristenson, Wayne B (Author) / Ros, Robert (Thesis advisor) / Beckstein, Oliver (Committee member) / Lindsay, Stuart (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2016
161263-Thumbnail Image.png
Description
My research focuses on studying the interaction between spatiotemporally encoded electric field (EF) and living cells and biomolecules. In this thesis, I report two projects that I have been working on to address these questions. My first project studies the EF modulation of the extracellular-signal-regulated kinase (ERK) pathway. I demonstrated

My research focuses on studying the interaction between spatiotemporally encoded electric field (EF) and living cells and biomolecules. In this thesis, I report two projects that I have been working on to address these questions. My first project studies the EF modulation of the extracellular-signal-regulated kinase (ERK) pathway. I demonstrated modulation of ERK activities using alternative current (AC) EFs in a new frequency range applied through high-k dielectric passivated microelectrodes with single-cell resolution without electrochemical process induced by the EF stimulation. Further experiments pinpointed a mechanism of phosphorylation site of epidermal growth factor (EGF) receptor to activate the EGFR-ERK pathway that is independent of EGF. AC EFs provide a new strategy to precisely control the dynamics of ERK activation, which may serve as a powerful platform for control of cell behaviors with implications in wide range of biomedical applications. In the second project, I used solid-state nanopore system as the base platform for single molecule experiments, and developed a scalable bottom-up process to construct planar nanopore devices with self-aligned transverse tunneling junctions, all embedded on a nanofluidic chip, based on feedback-controlled reversible electrochemical deposition in a confined nanoscale space. I demonstrated the first simultaneous detection of translocating DNA molecules from both the ionic channel and the tunneling junction with very high yield. Meanwhile, the signal amplitudes from the tunneling junction are unexpectedly high, indicating that these signals are probably dominated by transient currents associated with the fast motion of charged molecules between the transverse electrodes. This new platform provides the flexibility and reproducibility required to study quantum-tunneling-based DNA detection and sequencing. In summary, I have developed two platforms that engineer heterogenous EF at different length scales to modulate live cells and single biomolecules. My results suggest that the charges and dipoles of biomolecules can be electrostatically manipulated to regulate physiological responses and to push detection resolution to single molecule level. Nevertheless, there are still many interesting questions remain, such as the molecular mechanism of EF-protein interaction and tunneling signal extraction. These will be the topics for future investigations.
ContributorsWang, Yuan (Author) / Qing, Quan (Thesis advisor) / Lindsay, Stuart (Committee member) / Wang, Shaopeng (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2021
168502-Thumbnail Image.png
Description
Cubic boron nitride (c-BN), hexagonal boron nitride (h-BN), and semiconducting diamond all have physical properties that make them ideal materials for applications in high power and high frequency electronics, as well as radiation detectors. However, there is limited research on the unique properties and growth of c-BN or h-BN thin

Cubic boron nitride (c-BN), hexagonal boron nitride (h-BN), and semiconducting diamond all have physical properties that make them ideal materials for applications in high power and high frequency electronics, as well as radiation detectors. However, there is limited research on the unique properties and growth of c-BN or h-BN thin films. This dissertation addresses the deposition of c-BN via plasma enhanced chemical vapor deposition (PECVD) on boron doped diamond substrates. In-Situ X-ray photoelectron spectroscopy (XPS) is used to characterize the thickness and hexagonal to cubic ratio of boron nitride thin films. The effects of hydrogen concentration during the deposition of boron nitride are investigated. The boron nitride deposition rate is found to be dependent on the hydrogen gas flow. The sp2 to sp3 bonding is also found to be dependent on the hydrogen gas flow. Preferential growth of h-BN is observed when an excess of hydrogen is supplied to the reaction, while h-BN growth is suppressed when hydrogen flow is reduced to be the limiting reactant. Reduced hydrogen flow is also observed to promote preferential growth of c-BN. The hydrogen limited reaction is used to deposit c-BN on single crystal (100) boron-doped diamond substrates. In-situ ultra-violet photoelectron spectroscopy (UPS) and XPS are used to deduce the valence band offset of the diamond/c-BN interface. A valence band offset of -0.3 eV is measured with the diamond VBM above the VBM of c-BN. This value is then discussed in context of previous experimental results and theoretical calculations. Finally, UPS and XPS are used to characterize the surface states of phosphorus-doped diamond. Variations within the processing parameters for surface preparation and the effects on the electronic surface states are presented and discussed.
ContributorsBrown, Jesse (Author) / Nemanich, Robert J (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lindsay, Stuart (Committee member) / Zaniewski, Anna (Committee member) / Arizona State University (Publisher)
Created2021