This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

168486-Thumbnail Image.png
Description
The Balloon-borne Large Aperture Submillimeter Telescope - The Next Generation (BLAST-TNG) was designed to map the polarized emission from dust in star forming regions of our galaxy. The dust is thought to trace magnetic fields and thus inform us of the role that it plays in star formation. BLAST-TNG improves

The Balloon-borne Large Aperture Submillimeter Telescope - The Next Generation (BLAST-TNG) was designed to map the polarized emission from dust in star forming regions of our galaxy. The dust is thought to trace magnetic fields and thus inform us of the role that it plays in star formation. BLAST-TNG improves upon the previous generation of balloon-borne sub-mm polarimeters by increasing the number of detectors by over an order of magnitude. A novel detector technology which is naturally multiplexed, Kinetic Inductance Detectors have been developed as an elegant solution to the challenge of packing cryogenic focal plane arrays with detectors. To readout the multiplexed arrays, custom firmware and control software was developed for the ROACH2 FPGA based system. On January 6th 2020 the telescope was launched on a high-altitude balloon from Antarctica and flew for approximately 15 hours in the mid-stratosphere. During this time various calibration tasks occurred such as atmospheric skydips, the mapping of a sub-mm source, and the flashing of an internal calibration lamp. A mechanical failure shortened the flight so that only calibration scans were performed. In this dissertation I will present my analysis of the in-flight calibration data leading to measures of the overall telescope sensitivity and detector performance. The results of which prove kinetic inductance detectors as a viable candidate for future space based sub-mm telescopes. In parallel the fields of digital communications and radar signal processing have spawned the development of the Radio Frequency System On a Chip (RFSoC). This product by Xilinx incorporates a fabric of reconfigurable logic, ARM microprocessors, and high speed digitizers all into one chip. The system specs provide an improvement in every category of size, weight, power, and bandwidth.This is naturally the desired platform for the next generation of far-infrared telescopes which are pushing the limits of detector counts. I present the development of one of the first frequency multiplexed detector readouts on the RFSoC platform. Alternative firmware designs implemented on the RFSoC are also discussed. The firmware work presented will be used in part or in full for multiple current and upcoming far-infrared telescopes.
ContributorsSinclair, Adrian Kai (Author) / Mauskopf, Philip D (Thesis advisor) / Borthakur, Sanchayeeta (Committee member) / Groppi, Christopher (Committee member) / Jacobs, Daniel (Committee member) / Hubmayr, Johannes (Committee member) / Arizona State University (Publisher)
Created2021
157727-Thumbnail Image.png
Description
This dissertation details the development of an open source, frequency domain multiplexed (FDM) readout for large-format arrays of superconducting lumped-element kinetic inductance detectors (LEKIDs). The system architecture is designed to meet the requirements of current and next generation balloon-borne and ground-based submillimeter (sub-mm), far-infrared (FIR) and millimeter-wave (mm-wave) astronomical cameras,

This dissertation details the development of an open source, frequency domain multiplexed (FDM) readout for large-format arrays of superconducting lumped-element kinetic inductance detectors (LEKIDs). The system architecture is designed to meet the requirements of current and next generation balloon-borne and ground-based submillimeter (sub-mm), far-infrared (FIR) and millimeter-wave (mm-wave) astronomical cameras, whose science goals will soon drive the pixel counts of sub-mm detector arrays from the kilopixel to the megapixel regime. The in-flight performance of the readout system was verified during the summer, 2018 flight of ASI's OLIMPO balloon-borne telescope, from Svalbard, Norway. This was the first flight for both LEKID detectors and their associated readout electronics. In winter 2019/2020, the system will fly on NASA's long-duration Balloon Borne Large Aperture Submillimeter Telescope (BLAST-TNG), a sub-mm polarimeter which will map the polarized thermal emission from cosmic dust at 250, 350 and 500 microns (spatial resolution of 30", 41" and 59"). It is also a core system in several upcoming ground based mm-wave instruments which will soon observe at the 50 m Large Millimeter Telescope (e.g., TolTEC, SuperSpec, MUSCAT), at Sierra Negra, Mexico.

The design and verification of the FPGA firmware, software and electronics which make up the system are described in detail. Primary system requirements are derived from the science objectives of BLAST-TNG, and discussed in the context of relevant size, weight, power and cost (SWaP-C) considerations for balloon platforms. The system was used to characterize the instrumental performance of the BLAST-TNG receiver and detector arrays in the lead-up to the 2019/2020 flight attempt from McMurdo Station, Antarctica. The results of this characterization are interpreted by applying a parametric software model of a LEKID detector to the measured data in order to estimate important system parameters, including the optical efficiency, optical passbands and sensitivity.

The role that magnetic fields (B-fields) play in shaping structures on various scales in the interstellar medium is one of the central areas of research which is carried out by sub-mm/FIR observatories. The Davis-Chandrasekhar-Fermi Method (DCFM) is applied to a BLASTPol 2012 map (smoothed to 5') of the inner ~1.25 deg2 of the Carina Nebula Complex (CNC, NGC 3372) in order to estimate the strength of the B-field in the plane-of-the-sky (B-pos). The resulting map contains estimates of B-pos along several thousand sightlines through the CNC. This data analysis pipeline will be used to process maps of the CNC and other science targets which will be produced during the upcoming BLAST-TNG flight. A target selection survey of five nearby external galaxies which will be mapped during the flight is also presented.
ContributorsGordon, Samuel, Ph.D (Author) / Mauskopf, Philip (Thesis advisor) / Groppi, Christopher (Committee member) / Scowen, Paul (Committee member) / Bowman, Judd (Committee member) / Jacobs, Daniel (Committee member) / Arizona State University (Publisher)
Created2019