This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

151457-Thumbnail Image.png
Description
High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed

High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed AlGaN/GaN HEMTs, (2) microstructural and chemical analysis of the gate/buffer interface of AlN/GaN HEMTs, and (3) studies of the impact of laser-liftoff processing on AlGaN/GaN HEMTs. The electrical performance of stressed AlGaN/GaN HEMTs was measured and the devices binned accordingly. Source- and drain-side degraded, undegraded, and unstressed devices were then prepared via focused-ion-beam milling for examination. Defects in the near-gate region were identified and their correlation to electrical measurements analyzed. Increased gate leakage after electrical stressing is typically attributed to "V"-shaped defects at the gate edge. However, strong evidence was found for gate metal diffusion into the barrier layer as another contributing factor. AlN/GaN HEMTs grown on sapphire substrates were found to have high electrical performance which is attributed to the AlN barrier layer, and robust ohmic and gate contact processes. TEM analysis identified oxidation at the gate metal/AlN buffer layer interface. This thin a-oxide gate insulator was further characterized by energy-dispersive x-ray spectroscopy and energy-filtered TEM. Attributed to this previously unidentified layer, high reverse gate bias up to −30 V was demonstrated and drain-induced gate leakage was suppressed to values of less than 10−6 A/mm. In addition, extrinsic gm and ft * LG were improved to the highest reported values for AlN/GaN HEMTs fabricated on sapphire substrates. Laser-liftoff (LLO) processing was used to separate the active layers from sapphire substrates for several GaN-based HEMT devices, including AlGaN/GaN and InAlN/GaN heterostructures. Warpage of the LLO samples resulted from relaxation of the as-grown strain and strain arising from dielectric and metal depositions, and this strain was quantified by both Newton's rings and Raman spectroscopy methods. TEM analysis demonstrated that the LLO processing produced no detrimental effects on the quality of the epitaxial layers. TEM micrographs showed no evidence of either damage to the ~2 μm GaN epilayer generated threading defects.
ContributorsJohnson, Michael R. (Author) / Mccartney, Martha R (Thesis advisor) / Smith, David J. (Committee member) / Goodnick, Stephen (Committee member) / Shumway, John (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2012
154972-Thumbnail Image.png
Description
Gallium Nitride (GaN), being a wide-bandgap semiconductor, shows its advantage over the conventional semiconductors like Silicon and Gallium Arsenide for high temperature applications, especially in the temperature range from 300°C to 600°C. Development of stable ohmic contacts to GaN with low contact resistivity has been identified as a prerequisite to

Gallium Nitride (GaN), being a wide-bandgap semiconductor, shows its advantage over the conventional semiconductors like Silicon and Gallium Arsenide for high temperature applications, especially in the temperature range from 300°C to 600°C. Development of stable ohmic contacts to GaN with low contact resistivity has been identified as a prerequisite to the success of GaN high temperature electronics. The focus of this work was primarily derived from the requirement of an appropriate metal contacts to work with GaN-based hybrid solar cell operating at high temperature.

Alloyed Ti/Al/Ni/Au contact and non-alloyed Al/Au contact were developed to form low-resistivity contacts to n-GaN and their stability at high temperature were studied. The alloyed Ti/Al/Ni/Au contact offered a specific contact resistivity (ρc) of 6×10-6 Ω·cm2 at room temperature measured the same as the temperature increased to 400°C. No significant change in ρc was observed after the contacts being subjected to 400°C, 450°C, 500°C, 550°C, and 600°C, respectively, for at least 4 hours in air. Since several device technology prefer non-alloyed contacts Al/Au metal stack was applied to form the contacts to n-type GaN. An initial ρc of 3×10-4 Ω·cm2, measured after deposition, was observed to continuously reduce under thermal stress at 400°C, 450°C, 500°C, 550°C, and 600°C, respectively, finally stabilizing at 5×10-6 Ω·cm2. Both the alloyed and non-alloyed metal contacts showed exceptional capability of stable operation at temperature as high as 600°C in air with low resistivity ~10-6 Ω·cm2, with ρc lowering for the non-alloyed contacts with high temperatures.

The p-GaN contacts showed remarkably superior ohmic behavior at elevated temperatures. Both ρc and sheet resistance (Rsh) of p-GaN decreased by a factor of 10 as the ambient temperature increased from room temperature to 390°C. The annealed Ni/Au contact showed ρc of 2×10-3 Ω·cm2 at room temperature, reduced to 1.6×10-4 Ω·cm2 at 390°C. No degradation was observed after the contacts being subjected to 450°C in air for 48 hours. Indium Tin Oxide (ITO) contacts, which has been widely used as current spreading layer in GaN-base optoelectronic devices, measured an initial ρc [the resistivity of the ITO/p-GaN interface, since the metal/ITO ρc is negligible] of 1×10-2 Ω·cm2 at room temperature. No degradation was observed after the contact being subjected to 450°C in air for 8 hours.

Accelerated life testing (ALT) was performed to further evaluate the contacts stability at high temperatures quantitatively. The ALT results showed that the annealed Ni/Au to p-GaN contacts is more stable in nitrogen ambient, with a lifetime of 2,628 hours at 450°C which is approximately 12 times longer than that at 450°C in air.
ContributorsZhao, Shirong (Author) / Chowdhury, Srabanti (Thesis advisor) / Goodnick, Stephen (Committee member) / Zhao, Yuji (Committee member) / Nemanich, Robert (Committee member) / Arizona State University (Publisher)
Created2016
171570-Thumbnail Image.png
Description
In the developing field of nonlinear plasmonics, it is important to understand the nonlinear responses of the metallic nanostructures. In the present thesis, rigorous electrodynamical simulations based on the fully vectorial three-dimensional nonlinear hydrodynamic Drude model describing metal coupled to Maxwell's equations are performed to investigate linear and nonlinear responses

In the developing field of nonlinear plasmonics, it is important to understand the nonlinear responses of the metallic nanostructures. In the present thesis, rigorous electrodynamical simulations based on the fully vectorial three-dimensional nonlinear hydrodynamic Drude model describing metal coupled to Maxwell's equations are performed to investigate linear and nonlinear responses of the plasmonic materials and their coupling with quantum emitters.The first part of this thesis is devoted to analyzing properties of the localized surface plasmon resonances of metallic nanostructures and their nonlinear optical responses. The behavior of the second harmonic is investigated as a function of various physical parameters at different plasmonic interfaces, revealing highly complex dynamics. By collaborating with several research teams, simulations are proven to be in close agreement with experiments, both quantitative and qualitative. The second part of the thesis explores the strong coupling regime and its influence on the second harmonic generation. Considering plasmonic systems of molecules and periodic nanohole arrays on equal footing in the nonlinear regime is done for the first time. The results obtained are supported by a simple analytical model.
ContributorsDrobnyh, Elena (Author) / Sukharev, Maxim (Thesis advisor) / Schmidt, Kevin (Committee member) / Goodnick, Stephen (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2022