This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

152879-Thumbnail Image.png
Description
This dissertation describes Space Vector 1 and Space Vector 2, two video games that introduce Newtonian mechanics concepts. Space Vector 1 is a side-scrolling game, in which players choose to drop bombs or supplies. Players had to identify if the physics was correct during a mission, or they

This dissertation describes Space Vector 1 and Space Vector 2, two video games that introduce Newtonian mechanics concepts. Space Vector 1 is a side-scrolling game, in which players choose to drop bombs or supplies. Players had to identify if the physics was correct during a mission, or they had to plot the trajectory of a falling object, which was then simulated. In Space Vector 2, players were given velocity and acceleration values and had to plot the trajectory of a spaceship across a grid, or players were given a trajectory of a spaceship on a grid and had to program the velocity and acceleration values to produce the trajectory. Space Vector 1 was evaluated with 65 college undergraduates. Space Vector 2 was evaluated with 18 high school students. All participants were given a subset of the Force Concept Inventory, a standard assessment tool in physics education, as a pretest and posttest. Space Vector 1 was evaluated with a single group pretest-posttest design. Space Vector 2 was evaluated with a 2 x 2 ANOVA, where the factors were game mechanic (prediction mechanic or programming mechanic) and bonus questions (bonus question after a mission or no bonus question). Bayesian statistical methods were used for the data analysis. The best estimate for the average change in test scores for Space Vector 1 was a score gain of 1.042 (95% Highest Density Interval (HDI) [0.613, 1.487]) with an effect size of 0.611 (95% HDI [0.327, 0.937]). The best estimate for the grand mean of change scores in Space Vector 2 was an increase of 0.78 (95% HDI [-0.3, 1.85]) with an effect size of 0.379 (95% HDI [-0.112, 0.905]). The prediction
o bonus question version produced the largest change in score, where the best estimate for the mean change score was an increase of 1.2. The estimation intervals for the Space Vector 2 results were wide, and all included zero as a credible value.
ContributorsKeylor, Eric Karl (Author) / Gee, James P. (Thesis advisor) / Stevens, Scott M. (Committee member) / Nelson, Brian C. (Committee member) / Atkinson, Robert K. (Committee member) / Arizona State University (Publisher)
Created2014