This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 12
Filtering by

Clear all filters

151369-Thumbnail Image.png
Description
This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space

This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space which is the part of Minkowski space seen by an observer with a constant proper acceleration. Because it has an event horizon, Rindler space has been studied in great detail within the context of quantum field theory. However, a quantum gravitational treatment of Rindler space is handicapped by the fact that quantum gravity in flat space is poorly understood. By contrast, quantum gravity in anti-de Sitter space (AdS), is relatively well understood via the AdS/CFT correspondence. Taking this cue, we construct Rindler coordinates for AdS (Rindler-AdS space) in d + 1 spacetime dimensions. In three spacetime dimensions, we find novel one-parameter families of stationary vacua labeled by a rotation parameter β. The interesting thing about these rotating Rindler-AdS spaces is that they possess an observer-dependent ergoregion in addition to having an event horizon. Turning next to the application of AdS/CFT correspondence to Rindler-AdS space, we posit that the two Rindler wedges in AdSd+1 are dual to an entangled conformal field theory (CFT) that lives on two boundaries with geometry R × Hd-1. Specializing to three spacetime dimensions, we derive the thermodynamics of Rindler-AdS space using the boundary CFT. We then probe the causal structure of the spacetime by sending in a time-like source and observe that the CFT “knows” when the source has fallen past the Rindler horizon. We conclude by proposing an alternate foliation of Rindler-AdS which is dual to a CFT living in de Sitter space. Towards the end, we consider the concept of weak measurements in quantum mechanics, wherein the measuring instrument is weakly coupled to the system being measured. We consider such measurements in the context of two examples, viz. the decay of an excited atom, and the tunneling of a particle trapped in a well, and discuss the salient features of such measurements.
ContributorsSamantray, Prasant (Author) / Parikh, Maulik (Thesis advisor) / Davies, Paul (Committee member) / Vachaspati, Tanmay (Committee member) / Easson, Damien (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2012
151558-Thumbnail Image.png
Description
Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods

Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods such as no-core shell model or coupled-cluster techniques typically use softer non-local potentials because of their more rapid convergence with basis set size. These non-local potentials are typically defined in momentum space and are often based on effective field theory. Comparisons of the results of the two types of methods are complicated by the use of different potentials. This thesis discusses progress made in using such non-local potentials in quantum Monte Carlo calculations of light nuclei. In particular, it shows methods for evaluating the real-space, imaginary-time propagators needed to perform quantum Monte Carlo calculations using non-local potentials and universality properties of these propagators, how to formulate a good trial wave function for non-local potentials, and how to perform a "one-step" Green's function Monte Carlo calculation for non-local potentials.
ContributorsLynn, Joel E (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shovkovy, Igor (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
153101-Thumbnail Image.png
Description
Spin-orbit interactions are important in determining nuclear structure. They lead to a shift in the energy levels in the nuclear shell model, which could explain the sequence of magic numbers in nuclei. Also in nucleon-nucleon scattering, the large nucleon polarization observed perpendicular to the plane of scattering needs to be

Spin-orbit interactions are important in determining nuclear structure. They lead to a shift in the energy levels in the nuclear shell model, which could explain the sequence of magic numbers in nuclei. Also in nucleon-nucleon scattering, the large nucleon polarization observed perpendicular to the plane of scattering needs to be explained by adding the spin-orbit interactions in the potential. Their effects change the equation of state and other properties of nuclear matter. Therefore, the simulation of spin-orbit interactions is necessary in nuclear matter.

The auxiliary field diffusion Monte Carlo is an effective and accurate method for calculating the ground state and low-lying exited states in nuclei and nuclear matter. It has successfully employed the Argonne v6' two-body potential to calculate the equation of state in nuclear matter, and has been applied to light nuclei with reasonable agreement with experimental results. However, the spin-orbit interactions were not included in the previous simulations, because the isospin-dependent spin-orbit potential is difficult in the quantum Monte Carlo method. This work develops a new method using extra auxiliary fields to break up the interactions between nucleons, so that the spin-orbit interaction with isospin can be included in the Hamiltonian, and ground-state energy and other properties can be obtained.
ContributorsZhang, Jie (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2014
150570-Thumbnail Image.png
Description
Quark matter at sufficiently high density and low temperature is expected to be a color superconductor, and may exist in the interior of neutron stars. The properties of two simplest possible color-superconducting phases, i.e., the color-flavor-locked (CFL) and two-flavor superconducting (2SC) phases, are reviewed. The effect of a magnetic field

Quark matter at sufficiently high density and low temperature is expected to be a color superconductor, and may exist in the interior of neutron stars. The properties of two simplest possible color-superconducting phases, i.e., the color-flavor-locked (CFL) and two-flavor superconducting (2SC) phases, are reviewed. The effect of a magnetic field on the pairing dynamics in two-flavor color-superconducting dense quark matter is investigated. A universal form of the gap equation for an arbitrary magnetic field is derived in the weakly coupled regime of QCD at asymptotically high density, using the framework of Schwinger-Dyson equation in the improved rainbow approximation. The results for the gap in two limiting cases, weak and strong magnetic fields, are obtained and discussed. It is shown that the superconducting gap function in the weak magnetic field limit develops a directional dependence in momentum space. This property of the gap parameter is argued to be a consequence of a long-range interaction in QCD.
ContributorsYu, Lang (Author) / Shovkovy, Igor A. (Thesis advisor) / Lunardini, Cecilia (Committee member) / Schmidt, Kevin (Committee member) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Arizona State University (Publisher)
Created2012
156592-Thumbnail Image.png
Description
In this dissertation two kinds of strongly interacting fermionic systems were studied: cold atomic gases and nucleon systems. In the first part I report T=0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. I investigate how vortex core structure properties

In this dissertation two kinds of strongly interacting fermionic systems were studied: cold atomic gases and nucleon systems. In the first part I report T=0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. I investigate how vortex core structure properties behave over the BEC-BCS crossover. The vortex excitation energy, density profiles, and vortex core properties related to the current are calculated. A density suppression at the vortex core on the BCS side of the crossover and a depleted core on the BEC limit is found. Size-effect dependencies in the disk geometry were carefully studied. In the second part of this dissertation I turn my attention to a very interesting problem in nuclear physics. In most simulations of nonrelativistic nuclear systems, the wave functions are found by solving the many-body Schrödinger equations, and they describe the quantum-mechanical amplitudes of the nucleonic degrees of freedom. In those simulations the pionic contributions are encoded in nuclear potentials and electroweak currents, and they determine the low-momentum behavior. By contrast, in this work I present a novel quantum Monte Carlo formalism in which both relativistic pions and nonrelativistic nucleons are explicitly included in the quantum-mechanical states of the system. I report the renormalization of the nucleon mass as a function of the momentum cutoff, an Euclidean time density correlation function that deals with the short-time nucleon diffusion, and the pion cloud density and momentum distributions. In the two nucleon sector the interaction of two static nucleons at large distances reduces to the one-pion exchange potential, and I fit the low-energy constants of the contact interactions to reproduce the binding energy of the deuteron and two neutrons in finite volumes. I conclude by showing that the method can be readily applied to light-nuclei.
ContributorsMadeira, Lucas (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Beckstein, Oliver (Committee member) / Erten, Onur (Committee member) / Arizona State University (Publisher)
Created2018
153631-Thumbnail Image.png
Description
With the discovery of the Higgs Boson in 2012, particle physics has decidedly moved beyond the Standard Model into a new epoch. Though the Standard Model particle content is now completely accounted for, there remain many theoretical issues about the structure of the theory in need of resolution. Among these

With the discovery of the Higgs Boson in 2012, particle physics has decidedly moved beyond the Standard Model into a new epoch. Though the Standard Model particle content is now completely accounted for, there remain many theoretical issues about the structure of the theory in need of resolution. Among these is the hierarchy problem: since the renormalized Higgs mass receives quadratic corrections from a higher cutoff scale, what keeps the Higgs boson light? Many possible solutions to this problem have been advanced, such as supersymmetry, Randall-Sundrum models, or sub-millimeter corrections to gravity. One such solution has been advanced by the Lee-Wick Standard Model. In this theory, higher-derivative operators are added to the Lagrangian for each Standard Model field, which result in propagators that possess two physical poles and fall off more rapidly in the ultraviolet regime. It can be shown by an auxiliary field transformation that the higher-derivative theory is identical to positing a second, manifestly renormalizable theory in which new fields with opposite-sign kinetic and mass terms are found. These so-called Lee-Wick fields have opposite-sign propagators, and famously cancel off the quadratic divergences that plague the renormalized Higgs mass. The states in the Hilbert space corresponding to Lee-Wick particles have negative norm, and implications for causality and unitarity are examined.

This dissertation explores a variant of the theory called the N = 3 Lee-Wick

Standard Model. The Lagrangian of this theory features a yet-higher derivative operator, which produces a propagator with three physical poles and possesses even better high-energy behavior than the minimal Lee-Wick theory. An analogous auxiliary field transformation takes this higher-derivative theory into a renormalizable theory with states of alternating positive, negative, and positive norm. The phenomenology of this theory is examined in detail, with particular emphasis on the collider signatures of Lee-Wick particles, electroweak precision constraints on the masses that the new particles can take on, and scenarios in early-universe cosmology in which Lee-Wick particles can play a significant role.
ContributorsTerBeek, Russell Henry (Author) / Lebed, Richard F (Thesis advisor) / Alarcon, Ricardo (Committee member) / Belitsky, Andrei (Committee member) / Chamberlin, Ralph (Committee member) / Parikh, Maulik (Committee member) / Arizona State University (Publisher)
Created2015
154376-Thumbnail Image.png
Description
The muon problem of flavor physics presents a rich opportunity to study beyond standard model physics. The as yet undiscovered bound state (μ+μ-), called true muonium, presents a unique opportunity to investigate the muon problem. The near-future experimental searches for true muonium will produce it relativistically, preventing the easy application

The muon problem of flavor physics presents a rich opportunity to study beyond standard model physics. The as yet undiscovered bound state (μ+μ-), called true muonium, presents a unique opportunity to investigate the muon problem. The near-future experimental searches for true muonium will produce it relativistically, preventing the easy application of non-relativistic quantum mechanics. In this thesis, quantum field theory methods based on light-front quantization are used to solve an effective Hamiltonian for true muonium in the Fock space of |μ+μ-> , |μ+μ-γ> , |e+e->, |e+e-γ>, |τ+τ-> , and |τ+τ-γ> . To facilitate these calculations a new parallel code, True Muonium Solver With Front-Form Techniques (TMSWIFT), has been developed. Using this code, numerical results for the wave functions, energy levels, and decay constants of true muonium have been obtained for a range of coupling constants α. Work is also presented for deriving the effective interaction arising from the |γγ sector’s inclusion into the model.
ContributorsLamm, Henry (Author) / Lebed, Richard F (Thesis advisor) / Belitsky, Andrei (Committee member) / Alarcon, Ricardo (Committee member) / Easson, Damien (Committee member) / Arizona State University (Publisher)
Created2016
Description
Producing a brighter electron beams requires the smallest possible emittance from the cathode with the highest possible current. Several materials like ordered surface, single-crystalline metal surfaces, ordered surface, epitaxially grown high quantum efficiency alkali-antimonides, topologically non-trivial Dirac semimetals, and nano-structured confined emission photocathodes show promise of achieving ultra-low emittance with

Producing a brighter electron beams requires the smallest possible emittance from the cathode with the highest possible current. Several materials like ordered surface, single-crystalline metal surfaces, ordered surface, epitaxially grown high quantum efficiency alkali-antimonides, topologically non-trivial Dirac semimetals, and nano-structured confined emission photocathodes show promise of achieving ultra-low emittance with large currents. This work investigates the various limitations to obtain the smallest possible emittance from photocathodes, and demonstrates the performance of a novel electron gun that can utilize these photocathodes under optimal photoemission conditions. Chapter 2 discusses the combined effect of physical roughness and work function variation which contributes to the emittance. This is particularly seen in polycrystalline materials and is an explanation for their higher than expected emittance performance when operated at the photoemission threshold. A computation method is described for estimating the simultaneous contribution of both types of roughness on the mean transverse energy. This work motivates the need for implementing ordered surface, single-crystalline or epitaxially grown photocathodes. Chapter 3 investigates the effects of coulomb interactions on electron beams from theoretically low emittance, low total energy spread nanoscale photoemission sources specifically for electron microscopy applications. This computation work emphasizes the key role that image charge effects have on such cold, dense electron beams. Contrary to initial expectations, the primary limiter to beam brightness for theoretically ultra-low emittance photocathodes is the saturation current. Chapters 4 and 5 describe the development and commissioning of a high accelerating gradient, cryogenically cooled electron gun and photoemission diagnostics beamline within the Arizona State University Photoemission and Bright Beams research lab. This accelerator is unique in it's capability to utilize photocathodes mounted on holders typically used in commercial surface chemistry tools, has the necessary features and tools for operating in the optimal regime for many advanced photocathodes. A Pinhole Scan technique has been implemented on the beamline, and has shown a full 4-dimensional phase space measurement demonstrating the ability to measure beam brightness in this gun. This gun will allow for the demonstration of ultra-high brightness from next-generation ultra-low emittance photocathodes.
ContributorsGevorkyan, Gevork Samvelovich (Author) / Karkare, Siddharth (Thesis advisor) / Padmore, Howard (Committee member) / Alarcon, Ricardo (Committee member) / Kaindl, Robert (Committee member) / Graves, William (Committee member) / Arizona State University (Publisher)
Created2023
187398-Thumbnail Image.png
Description
Millimeter astronomy unlocks a window to the earliest produced light in the universe, called the Cosmic Microwave Background (CMB). Through analysis of the CMB, overarching features about the universe's evolution and structure can be better understood. Modern millimeter-wave instruments are constantly seeking improvements to sensitivity in the effort

Millimeter astronomy unlocks a window to the earliest produced light in the universe, called the Cosmic Microwave Background (CMB). Through analysis of the CMB, overarching features about the universe's evolution and structure can be better understood. Modern millimeter-wave instruments are constantly seeking improvements to sensitivity in the effort to further constrain small CMB anisotropies in both temperature and polarization. As a result, detailed investigations into lesser-known processes of the universe are now becoming possible. Here I present work on the millimeter-wavelength analysis of z ≈ 1 quiescent galaxy samples, whose conspicuous quenching of star formation is likely the result of active galactic nuclei (AGN) accretion onto supermassive black holes. Such AGN feedback would heat up a galaxy's surrounding circumgalactic medium (CGM). Obscured by signal from cold dust, I isolate the thermal Sunyaev-Zel'dovich effect, a CMB temperature anisotropy produced by hot ionized gas, to measure the CGM's average thermal energy and differentiate between AGN accretion models. I find a median thermal energy that best corresponds with moderate to high levels of AGN feedback. In addition, the radial profile of cold dust associated with the galaxy samples appears to be consistent with large-scale clustering of the universe. In the endeavor of increasingly efficient millimeter-wave detectors, I also describe the design process for novel multichroic dual-polarization antennas. Paired with extended hemispherical lenslets, simulations of these superconducting antennas show the potential to match or exceed performance compared to similar designs already in use. A prototype detector array, with dual-bowtie and hybrid trapezoidal antennas coupled to microwave kinetic inductance detectors (MKIDs) has been made and is under preparation to be tested in the near future. Finally, I also present my contributions to the cryogenic readout design of the Ali CMB Polarization Telescope (AliCPT), a large-scale CMB telescope geared towards searching the Northern Hemisphere sky for a unique `B-mode' polarization expected to be produced by primordial gravitational waves. Cryogenic readout is responsible for successful interfacing between room temperature electronics and sensitive detectors operating on AliCPT's sub-Kelvin temperature focal plane. The development of millimeter-wave instruments and future endeavors show great potential for the overall scientific community.
ContributorsMeinke, Jeremy (Author) / Mauskopf, Philip (Thesis advisor) / Alarcon, Ricardo (Committee member) / Scannapieco, Evan (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2023
152355-Thumbnail Image.png
Description
For this project, the diffuse supernova neutrino background (DSNB) has been calculated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse electron antineutrino flux is ∼ 0.10 – 0.59 /cm2/s at 99% confidence level, which is 5 times lower than the Super-Kamiokande 2012

For this project, the diffuse supernova neutrino background (DSNB) has been calculated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse electron antineutrino flux is ∼ 0.10 – 0.59 /cm2/s at 99% confidence level, which is 5 times lower than the Super-Kamiokande 2012 upper limit of 3.0 /cm2/s, above energy threshold of 17.3 MeV. With a Megaton scale water detector, 40 events could be detected above the threshold per year. In addition, the detectability of neutrino bursts from direct black hole forming collapses (failed supernovae) at Megaton detectors is calculated. These neutrino bursts are energetic and with short time duration, ∼ 1s. They could be identified by the time coincidence of N ≥2 or N ≥3 events within 1s time window from nearby (4 – 5 Mpc) failed supernovae. The detection rate of these neutrino bursts could get up to one per decade. This is a realistic way to detect a failed supernova and gives a promising method for studying the physics of direct black hole formation mechanism. Finally, the absorption of ultra high energy (UHE) neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel, is discussed. Results are applied to serval models of UHE neutrino sources. Suppression effects are strong for sources that extend beyond z ∼ 10. This provides a fascinating probe of the physics of the relic neutrino background in the unexplored redshift interval z ∼ 10 – 100. Ultimately this research will examine the detectability of DSNB, neutrino bursts from failed supernovae and absorption effects in the neutrino spectrum.
ContributorsYang, Lili, 1970- (Author) / Lunardini, Cecilia (Thesis advisor) / Alarcon, Ricardo (Committee member) / Shovkovy, Igor (Committee member) / Timmes, Francis (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2013