This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 294
Filtering by

Clear all filters

151876-Thumbnail Image.png
Description
This study reports on research that explores local manifestations of Arizona's English-only language education policy by investigating the experiences of selected English language learners (ELLs) with reclassification into mainstream classrooms and four of their classroom teachers. In this study, I employed ethnographic methods (participant observation, document collection, interviewing, and focus

This study reports on research that explores local manifestations of Arizona's English-only language education policy by investigating the experiences of selected English language learners (ELLs) with reclassification into mainstream classrooms and four of their classroom teachers. In this study, I employed ethnographic methods (participant observation, document collection, interviewing, and focus groups) to investigate what practices emerge after ELLs are reclassified as "Fluent English Proficient" (FEP) students and moved from "the four-hour English Language Development (ELD) block" into mainstream classrooms. With a focus on the perspectives and experiences of twelve 5th and 6th grade elementary school students and four of their teachers, I examined how students and teachers viewed and responded to restrictive language policies and the practices that accompany them. One finding from this study is that students and teachers believed that the four-hour ELD block helped prepare students to learn English, but "proficiency" in English as determined by the Arizona English Language Learner Assessment (AZELLA) did not always indicate a solid understanding of the language used in the mainstream classrooms. A second finding from this study is that ideologies of language that position English over multilingualism are robust and further strengthened by language policies that prohibit the use of languages other than English in ELD and mainstream classrooms. A third finding from this study is that, in part because of the language restrictive policies in place, particular groups of students continued to engage in practices that enact ideologies of language that devalue multilingualism (e.g., "language policing"). At the same time, however, a close examination of student-to-student interaction indicates that these same students use their multiple linguistic and communicative resources in a variety of creative and purposeful ways (e.g., through language crossing and language sharing). The close examination of policy as practice in a restrictive educational language policy context conducted here has implications for debates about English-only as a method and medium of instruction, about how the ideologies of language operate in situated interactional contexts, and about how youth might use existing resources to challenge restrictive ideologies and policies.
ContributorsFredricks, Daisy Ellen (Author) / Warriner, Doris S. (Thesis advisor) / Arias, M. Bea (Committee member) / Warhol, Larisa (Committee member) / Arizona State University (Publisher)
Created2013
152209-Thumbnail Image.png
Description
There is a documented gap between research-based recommendations produced by university-based scholars in the field of education in the United States and the evidence that U.S. politicians' use when deciding which educational policies to implement or amend. This is a problem because university-based education scholars produce vast quantities of research

There is a documented gap between research-based recommendations produced by university-based scholars in the field of education in the United States and the evidence that U.S. politicians' use when deciding which educational policies to implement or amend. This is a problem because university-based education scholars produce vast quantities of research each year, some of which could, and more importantly should, be useful to politicians in their decision-making processes and yet, politicians continue to make policy decisions about education without the benefit of much of the knowledge that has been gained through scholarly research. I refer to the small fraction of university-based education scholars who are demonstrably successful at getting scholarly research into the hands of politicians to be used for decision-making purposes as "university-based bipartisan scholarship brokers". They are distinct from other university-based education scholars in that they engage with politicians from both political parties around research and, as such, are able to use scholarly research to influence the education policymaking process. The problem that this dissertation addresses is the lack of use, by U.S. politicians, of scholarly research produced by United States university-based education scholars as input in education policy decisions. The way in which this problem is explored is through studying university-based bipartisan scholarship brokers. I focused on three areas for exploration: the methods university-based bipartisan scholarship brokers use to successfully get U.S. politicians to consider scholarly research as an input in their decision-making processes around education policy, how these scholars are different than the majority of university-based education policy scholars, and how they conceive of the education policy-setting agenda. What I uncovered in this dissertation is that university-based bipartisan scholarship brokers are a complete sub-group of university-based education scholars. They work above the rigorous promotion and tenure requirements of their home universities in order to use scholarly research to help serve the research needs of politicians. Their engagement is distinct among university-based education scholars and through this dissertation their perspective is presented in participants' own authentic language.
ContributorsAckman, Emily Rydel (Author) / Garcia, David R. (Thesis advisor) / Powers, Jeanne (Committee member) / Fischman, Gustavo E (Committee member) / Arizona State University (Publisher)
Created2013
152097-Thumbnail Image.png
Description
After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent updates in the field of DNA sequencing technologies followed by description of the nanofluidics route to single molecule DNA detection.

After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent updates in the field of DNA sequencing technologies followed by description of the nanofluidics route to single molecule DNA detection. Chapter 2 presents discusses carbon nanotube(CNT) based nanofluidics. The fabrication and DNA sensing measurements of CNT forest membrane devices are presented. Chapter 3 gives the background for functionalization and recognition aspects of reader molecules. Chapter 4 marks the transition to solid state nanopore nanofluidics. The fabrication of Imidazole functionalized nanopores is discussed. The Single Molecule detection results of DNA from Palladium nanopore devices are presented next. Combining chemical recognition to nanopore technology, it has been possible to prolong the duration of single molecule events from the order of a few micro seconds to upto a few milliseconds. Overall, the work presented in this thesis promises longer single molecule detection time in a nanofludic set up and paves way for novel nanopore- tunnel junction devices that combine recognition chemistry, tunneling device and nanopore approach.
ContributorsKrishnakumar, Padmini (Author) / Lindsay, Stuart (Thesis advisor) / He, Jin (Committee member) / Vaiana, Sara (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2013
151898-Thumbnail Image.png
Description
The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum

The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum of Ge-on-Si films, dominated by direct gap emission. It was found that the difference is due to the supression of self-absorption effects in Ge films, combined with a deviation from quasi-equilibrium conditions in the conduction band of undoped films. The latter is confirmed by a model suggesting that the deviation is caused by the shorter recombination lifetime in the films relative to bulk Ge. The knowledge acquired from this work was then utilized to study the PL properties of n-type Ge1-ySny/Si (y=0.004-0.04) samples grown via chemical vapor deposition of Ge2H6/SnD4/P(GeH3)3. It was found that the emission intensity (I) of these samples is at least 10x stronger than observed in un-doped counterparts and that the Idir/Iind ratio of direct over indirect gap emission increases for high-Sn contents due to the reduced gamma-L valley separation, as expected. Next the PL investigation was expanded to samples with y=0.05-0.09 grown via a new method using the more reactive Ge3H8 in place of Ge2H6. Optical quality, 1-um thick Ge1-ySny/Si(100) layers were produced using Ge3H10/SnD4 and found to exhibit strong, tunable PL near the threshold of the direct-indirect bandgap crossover. A byproduct of this study was the development of an enhanced process to produce Ge3H8, Ge4H10, and Ge5H12 analogs for application in ultra-low temperature deposition of Group-IV semiconductors. The thesis also studies synthesis routes of an entirely new class of semiconductor compounds and alloys described by Si5-2y(III-V)y (III=Al, V= As, P) comprising of specifically designed diamond-like structures based on a Si parent lattice incorporating isolated III-V units. The common theme of the two thesis topics is the development of new mono-crystalline materials on ubiquitous silicon platforms with the objective of enhancing the optoelectronic performance of Si and Ge semiconductors, potentially leading to the design of next generation optical devices including lasers, detectors and solar cells.
ContributorsGrzybowski, Gordon (Author) / Kouvetakis, John (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2013
151899-Thumbnail Image.png
Description
This study sought to analyze the messages being conveyed through the discourse utilized in presenting the public face of The Arizona Early Childhood Development and Health Board, popularly known as First Things First (FTF) and to reveal how the different discourses and ideologies within FTF have been in the past

This study sought to analyze the messages being conveyed through the discourse utilized in presenting the public face of The Arizona Early Childhood Development and Health Board, popularly known as First Things First (FTF) and to reveal how the different discourses and ideologies within FTF have been in the past and currently are "contending and struggling for dominance (Wodak, 2007)." FTF is located within the policy realm of Early Childhood Education and Care (ECEC). The people and the system have been very influential in guiding the course and policies set forth in Arizona since the citizen initiative, Proposition 203, passed in 2006, which allowed for the creation of the Early Childhood Development and Health Board. Lakoff's techniques for analyzing frames of discourse were utilized in conjunction with critical discourse analysis in order to tease out frames of reference, shifts in both discourse and frames, specific modes of messaging, and consistencies and inconsistencies within the public face presented by FTF.
ContributorsMiller, Lisa (Author) / Swadener, Elizabeth B (Thesis advisor) / Nakagawa, Kathy (Committee member) / Romero, Mary (Committee member) / Arizona State University (Publisher)
Created2013
151745-Thumbnail Image.png
Description
The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states,

The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states, exciton binding energies, and effects of electron irradiation on luminescence. Part of this work is focused on p-type Mg-doped GaN and InGaN. These materials are extremely important for the fabrication of visible light emitting diodes and diode lasers and their complex nature is currently not entirely understood. The luminescence of Mg-doped GaN films has been correlated with electrical and structural measurements in order to understand the behavior of hydrogen in the material. Deeply-bound excitons emitting near 3.37 and 3.42 eV are observed in films with a significant hydrogen concentration during cathodoluminescence at liquid helium temperatures. These radiative transitions are unstable during electron irradiation. Our observations suggest a hydrogen-related nature, as opposed to a previous assignment of stacking fault luminescence. The intensity of the 3.37 eV transition can be correlated with the electrical activation of the Mg acceptors. Next, the acceptor energy level of Mg in InGaN is shown to decrease significantly with an increase in the indium composition. This also corresponds to a decrease in the resistivity of these films. In addition, the hole concentration in multiple quantum well light emitting diode structures is much more uniform in the active region when Mg-doped InGaN (instead of Mg-doped GaN) is used. These results will help improve the efficiency of light emitting diodes, especially in the green/yellow color range. Also, the improved hole transport may prove to be important for the development of photovoltaic devices. Cathodoluminescence studies have also been performed on nanoindented ZnO crystals. Bulk, single crystal ZnO was indented using a sub-micron spherical diamond tip on various surface orientations. The resistance to deformation (the "hardness") of each surface orientation was measured, with the c-plane being the most resistive. This is due to the orientation of the easy glide planes, the c-planes, being positioned perpendicularly to the applied load. The a-plane oriented crystal is the least resistive to deformation. Cathodoluminescence imaging allows for the correlation of the luminescence with the regions located near the indentation. Sub-nanometer shifts in the band edge emission have been assigned to residual strain the crystals. The a- and m-plane oriented crystals show two-fold symmetry with regions of compressive and tensile strain located parallel and perpendicular to the ±c-directions, respectively. The c-plane oriented crystal shows six-fold symmetry with regions of tensile strain extending along the six equivalent a-directions.
ContributorsJuday, Reid (Author) / Ponce, Fernando A. (Thesis advisor) / Drucker, Jeff (Committee member) / Mccartney, Martha R (Committee member) / Menéndez, Jose (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
151952-Thumbnail Image.png
Description
Microwave dielectrics are widely used to make resonators and filters in telecommunication systems. The production of thin films with high dielectric constant and low loss could potentially enable a marked reduction in the size of devices and systems. However, studies of these materials in thin film form are very sparse.

Microwave dielectrics are widely used to make resonators and filters in telecommunication systems. The production of thin films with high dielectric constant and low loss could potentially enable a marked reduction in the size of devices and systems. However, studies of these materials in thin film form are very sparse. In this research, experiments were carried out on practical high-performance dielectrics including ZrTiO4-ZnNb2O6 (ZTZN) and Ba(Co,Zn)1/3Nb2/3O3 (BCZN) with high dielectric constant and low loss tangent. Thin films were deposited by laser ablation on various substrates, with a systematical study of growth conditions like substrate temperature, oxygen pressure and annealing to optimize the film quality, and the compositional, microstructural, optical and electric properties were characterized. The deposited ZTZN films were randomly oriented polycrystalline on Si substrate and textured on MgO substrate with a tetragonal lattice change at elevated temperature. The BCZN films deposited on MgO substrate showed superior film quality relative to that on other substrates, which grow epitaxially with an orientation of (001) // MgO (001) and (100) // MgO (100) when substrate temperature was above 500 oC. In-situ annealing at growth temperature in 200 mTorr oxygen pressure was found to enhance the quality of the films, reducing the peak width of the X-ray Diffraction (XRD) rocking curve to 0.53o and the χmin of channeling Rutherford Backscattering Spectrometry (RBS) to 8.8% when grown at 800oC. Atomic Force Microscopy (AFM) was used to study the topography and found a monotonic decrease in the surface roughness when the growth temperature increased. Optical absorption and transmission measurements were used to determine the energy bandgap and the refractive index respectively. A low-frequency dielectric constant of 34 was measured using a planar interdigital measurement structure. The resistivity of the film is ~3×1010 ohm·cm at room temperature and has an activation energy of thermal activated current of 0.66 eV.
ContributorsLi, You (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Singh, Rakesh (Committee member) / Arizona State University (Publisher)
Created2013
151955-Thumbnail Image.png
Description
This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy

This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy results, and obtain the theoretical free energies of formation. The electronic structure of the systems was calculated and the bonding and ionic properties of the systems were analyzed. The novel hexahydrides were compared to the important hydrogen storage material KSiH3. This showed that the hypervalent nature of the SiH62- ions reduced the Si-H bonding strength considerably. These hydrogen rich compounds could have promising energy applications as they link to alternative hydrogen fuel technology. The carbide systems Li-C (A=Li,Ca,Mg) were studied using \emph{ab initio} and evolutionary algorithms at high pressures. At ambient pressure Li2C2 and CaC2 are known to contain C22- dumbbell anions and CaC2 is polymorphic. At elevated pressure both CaC2 and Li2C2 display polymorphism. At ambient pressure the Mg-C system contains several experimentally known phases, however, all known phases are shown to be metastable with respect to the pure elements Mg and C. First principle investigation of the configurational space of these compounds via evolutionary algorithms results in a variety of metastable and unique structures. The binary compounds ZnSb and ZnAs are II-V electron-poor semiconductors with interesting thermoelectric properties. They contain rhomboid rings composed of Zn2Sb2 (Zn2As2) with multi-centered covalent bonds which are in turn covalently bonded to other rings via two-centered, two-electron bonds. Ionicity was explored via Bader charge analysis and it appears that the low ionicity that these materials display is a necessary condition of their multicentered bonding. Both compounds were found to have narrow, indirect band gaps with multi-valley valence and conduction bands; which are important characteristics for high thermopower in thermoelectric materials. Future work is needed to analyze the lattice properties of the II-V CdSb-type systems, especially in order to find the origin of the extremely low thermal conductivity that these systems display.
ContributorsBenson, Daryn Eugene (Author) / Häussermann, Ulrich (Thesis advisor) / Shumway, John (Thesis advisor) / Chamberlin, Ralph (Committee member) / Sankey, Otto (Committee member) / Treacy, Mike (Committee member) / Arizona State University (Publisher)
Created2013
151657-Thumbnail Image.png
Description
This study examined the experiences of first-generation college students who were enrolled in online degree programs at a traditional brick-and-mortar university located in the western United States. These students were viewed as "double first-generation" because they were not only the first in their family to pursue a bachelor's degree, but

This study examined the experiences of first-generation college students who were enrolled in online degree programs at a traditional brick-and-mortar university located in the western United States. These students were viewed as "double first-generation" because they were not only the first in their family to pursue a bachelor's degree, but were also among the first generation in the history of American higher education to pursue public, postsecondary education in an entirely online format. The research was designed as a multiple methods case study that emphasized qualitative methods. Being exploratory in nature, the study focused on participant characteristics and the ways that they responded to and persisted in online degree programs. Data was collected through research that was conducted entirely online; it included an e-survey, two asynchronous focus groups, and individual interviews that were conducted via Skype. Grounded theory served as the primary method for data analysis, while quantitative descriptive statistics contextualized the case. The results of this study provide a window into the micro- and macro-level tensions at play in public, online postsecondary education. The findings indicate that these pioneering and traditionally underserved students drew from their diverse backgrounds to persist toward degree completion, overcoming challenges associated with time and finances, in hopes that their efforts would bring career and social mobility. As one of the first studies to critically examine the case of double first-generation college students, this study extends the literature in meaningful ways to provide valuable insights for policymakers, administrators, faculty, and staff who are involved with this population.
ContributorsShea, Jennifer Dawn (Author) / Fischman, Gustavo E. (Thesis advisor) / De Los Santos Jr, Alfredo G. (Committee member) / Ewing, Kris (Committee member) / Archambault, Leanna (Committee member) / Arizona State University (Publisher)
Created2013
151675-Thumbnail Image.png
Description
This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some

This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and elemental segregation. In a separate study, compositional instability is observed in lattice-matched InAlN films grown on GaN, for growth beyond a certain thickness. Beyond 200 nm of thickness, two sub-layers with different indium content are observed, the top one with lower indium content.
ContributorsHuang, Jingyi (Author) / Ponce, Fernando A. (Thesis advisor) / Carpenter, Ray W (Committee member) / Smith, David J. (Committee member) / Yu, Hongbin (Committee member) / Treacy, Michael Mj (Committee member) / Arizona State University (Publisher)
Created2013