This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 294
Filtering by

Clear all filters

150054-Thumbnail Image.png
Description
Emergent environmental issues, ever-shrinking petroleum reserves, and rising fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. Meanwhile, however, the development and viability of biofuel fermentations remain limited by numerous factors such as feedback inhibition and inefficient and generally energy intensive product recovery

Emergent environmental issues, ever-shrinking petroleum reserves, and rising fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. Meanwhile, however, the development and viability of biofuel fermentations remain limited by numerous factors such as feedback inhibition and inefficient and generally energy intensive product recovery processes. To circumvent both feedback inhibition and recovery issues, researchers have turned their attention to incorporating energy efficient separation techniques such as adsorption in in situ product recovery (ISPR) approaches. This thesis focused on the characterization of two novel adsorbents for the recovery of alcohol biofuels from model aqueous solutions. First, a hydrophobic silica aerogel was evaluated as a biofuel adsorbent through characterization of equilibrium behavior for conventional second generation biofuels (e.g., ethanol and n-butanol). Longer chain and accordingly more hydrophobic alcohols (i.e., n-butanol and 2-pentanol) were more effectively adsorbed than shorter chain alcohols (i.e., ethanol and i-propanol), suggesting a mechanism of hydrophobic adsorption. Still, the adsorbed alcohol capacity at biologically relevant conditions were low relative to other `model' biofuel adsorbents as a result of poor interfacial contact between the aqueous and sorbent. However, sorbent wettability and adsorption is greatly enhanced at high concentrations of alcohol in the aqueous. Consequently, the sorbent exhibits Type IV adsorption isotherms for all biofuels studied, which results from significant multilayer adsorption at elevated alcohol concentrations in the aqueous. Additionally, sorbent wettability significantly affects the dynamic binding efficiency within a packed adsorption column. Second, mesoporous carbons were evaluated as biofuel adsorbents through characterization of equilibrium and kinetic behavior. Variations in synthetic conditions enabled tuning of specific surface area and pore morphology of adsorbents. The adsorbed alcohol capacity increased with elevated specific surface area of the adsorbents. While their adsorption capacity is comparable to polymeric adsorbents of similar surface area, pore morphology and structure of mesoporous carbons greatly influenced adsorption rates. Multiple cycles of adsorbent regeneration rendered no impact on adsorption equilibrium or kinetics. The high chemical and thermal stability of mesoporous carbons provide potential significant advantages over other commonly examined biofuel adsorbents. Correspondingly, mesoporous carbons should be further studied for biofuel ISPR applications.
ContributorsLevario, Thomas (Author) / Nielsen, David R (Thesis advisor) / Vogt, Bryan D (Committee member) / Lind, Mary L (Committee member) / Arizona State University (Publisher)
Created2011
150018-Thumbnail Image.png
Description
Parents die during the lives of their children. If the child is an adolescent, that death will impact the student's education immediately or in subsequent years. Findings show the death of a mother does impact the daughter's education. It is imperative educators are willing to work with the student at

Parents die during the lives of their children. If the child is an adolescent, that death will impact the student's education immediately or in subsequent years. Findings show the death of a mother does impact the daughter's education. It is imperative educators are willing to work with the student at the time the death occurs as well as in the ensuing months. Seidman's (2006) three-interview format was used as a template for the interviews of 11 women, ranging in age from 19 to 78 and whose mothers died when the women were adolescents. The interviews were primarily conducted in one sitting, transcribed, and then analyzed for common themes that connected to the research on the topic. Those themes include grieving, the role of caring in education, the role of teacher as the second mother, mother-daughter relationships, and the impact of parent death on schooling. These themes from the data cross cut with thematic strands within the study's theoretical framework: the nurturing and empathetic role of the mother, a desire of the daughter not to be different, and the ethics of caring. Findings in this study reveal that the negative impacts of mother loss are felt in diffuse ways, such as a lack of academic or emotional encouragement. Many women discussed the need and availability of support groups including groups at colleges. One practical implication of these findings is schools need to become caring communities in which caring is the norm for all students and teachers, thereby providing all students with needed support in times of crisis. The implications for further research include the impact of the mother death on the education of daughters, how volunteering with an organization related to the cause of the mother's death assists the daughter and types of programs most important to a student's success in post-secondary education. Adolescents are in a time of great change in their lives, and for a daughter, the loss of a mother has an everlasting, life-changing impact.
ContributorsRatti, Theresa Helen McLuskey (Author) / Mccarty, Teresa L (Thesis advisor) / Fischman, Gustavo E. (Committee member) / Powers, Jeanne M. (Committee member) / Arizona State University (Publisher)
Created2011
150017-Thumbnail Image.png
Description
The United States is facing an emerging principal shortage. This study examines an intervention to deliver professional development for assistant principals on their way to becoming principals. The intervention intended to boost their sense of efficacy as if they were principals while creating a supportive community of professionals for ongoing

The United States is facing an emerging principal shortage. This study examines an intervention to deliver professional development for assistant principals on their way to becoming principals. The intervention intended to boost their sense of efficacy as if they were principals while creating a supportive community of professionals for ongoing professional learning. The community was designed much like a professional learning community (PLC) with the intent of developing into a community of practice (CoP). The participants were all elementary school assistant principals in a Title I district in a large metropolitan area. The researcher interviewed an expert set of school administrators consisting of superintendents and consultants (and others who have knowledge of what a good principal ought to be) about what characteristics and skills were left wanting in principal applicants. The data from these interviews provided the discussion topics for the intervention. The assistant principals met regularly over the course of a semester and discussed the topics provided by the expert set of school administrators. Participant interaction within the sessions followed conversation protocols. The researcher was also a participant in the group and served as the coordinator. Each session was recorded and transcribed. The researcher used a mixed methods approach to analyze the intervention. Participants were surveyed to measure their efficacy before and after the intervention. The session transcripts were analyzed using open and axial coding. Data showed no statistically significant change in the participants' sense of efficacy. Data also showed the participants became a coalescing community of practice.
ContributorsRichman, Bryan (Author) / Puckett, Kathleen (Thesis advisor) / Smith, Jeffery (Committee member) / Foulger, Teresa (Committee member) / Arizona State University (Publisher)
Created2011
149660-Thumbnail Image.png
Description
Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several

Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several important limitations which must be overcome before commercial viability can be achieved. Active areas of research into making them commercially viable include reducing the cost, size and weight of fuel cells while also increasing their durability and performance. A growing and important part of this research involves the computer modeling of fuel cells. High quality computer modeling and simulation of fuel cells can help speed up the discovery of optimized fuel cell components. Computer modeling can also help improve fundamental understanding of the mechanisms and reactions that take place within the fuel cell. The work presented in this thesis describes a procedure for utilizing computer modeling to create high quality fuel cell simulations using Ansys Fluent 12.1. Methods for creating computer aided design (CAD) models of fuel cells are discussed. Detailed simulation parameters are described and emphasis is placed on establishing convergence criteria which are essential for producing consistent results. A mesh sensitivity study of the catalyst and membrane layers is presented showing the importance of adhering to strictly defined convergence criteria. A study of iteration sensitivity of the simulation at low and high current densities is performed which demonstrates the variance in the rate of convergence and the absolute difference between solution values derived at low numbers of iterations and high numbers of iterations.
ContributorsArvay, Adam (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Liang, Yong (Committee member) / Subach, James (Committee member) / Arizona State University (Publisher)
Created2011
150405-Thumbnail Image.png
Description
Infant mortality rate of field deployed photovoltaic (PV) modules may be expected to be higher than that estimated by standard qualification tests. The reason for increased failure rates may be attributed to the high system voltages. High voltages (HV) in grid connected modules induce additional stress factors that cause new

Infant mortality rate of field deployed photovoltaic (PV) modules may be expected to be higher than that estimated by standard qualification tests. The reason for increased failure rates may be attributed to the high system voltages. High voltages (HV) in grid connected modules induce additional stress factors that cause new degradation mechanisms. These new degradation mechanisms are not recognized by qualification stress tests. To study and model the effect of high system voltages, recently, potential induced degradation (PID) test method has been introduced. Using PID studies, it has been reported that high voltage failure rates are essentially due to increased leakage currents from active semiconducting layer to the grounded module frame, through encapsulant and/or glass. This project involved designing and commissioning of a new PID test bed at Photovoltaic Reliability Laboratory (PRL) of Arizona State University (ASU) to study the mechanisms of HV induced degradation. In this study, PID stress tests have been performed on accelerated stress modules, in addition to fresh modules of crystalline silicon technology. Accelerated stressing includes thermal cycling (TC200 cycles) and damp heat (1000 hours) tests as per IEC 61215. Failure rates in field deployed modules that are exposed to long term weather conditions are better simulated by conducting HV tests on prior accelerated stress tested modules. The PID testing was performed in 3 phases on a set of 5 mono crystalline silicon modules. In Phase-I of PID test, a positive bias of +600 V was applied, between shorted leads and frame of each module, on 3 modules with conducting carbon coating on glass superstrate. The 3 module set was comprised of: 1 fresh control, TC200 and DH1000. The PID test was conducted in an environmental chamber by stressing the modules at 85°C, for 35 hours with an intermittent evaluation for Arrhenius effects. In the Phase-II, a negative bias of -600 V was applied on a set of 3 modules in the chamber as defined above. The 3 module set in phase-II was comprised of: control module from phase-I, TC200 and DH1000. In the Phase-III, the same set of 3 modules which were used in the phase-II again subjected to +600 V bias to observe the recovery of lost power during the Phase-II. Electrical performance, infrared (IR) and electroluminescence (EL) were done prior and post PID testing. It was observed that high voltage positive bias in the first phase resulted in little
o power loss, high voltage negative bias in the second phase caused significant power loss and the high voltage positive bias in the third phase resulted in major recovery of lost power.
ContributorsGoranti, Sandhya (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
150344-Thumbnail Image.png
Description
The uncertainty of change inherent in issues such as climate change and regional growth has created a significant challenge for public decision makers trying to decide what adaptation actions are needed to respond to these possible changes. This challenge threatens the resiliency and thus the long term sustainability of our

The uncertainty of change inherent in issues such as climate change and regional growth has created a significant challenge for public decision makers trying to decide what adaptation actions are needed to respond to these possible changes. This challenge threatens the resiliency and thus the long term sustainability of our social-ecological systems. Using an empirical embedded case study approach to explore the application of advanced scenario analysis methods to regional growth visioning projects in two regions, this dissertation provides empirical evidence that for issues with high uncertainty, advanced scenario planning (ASP) methods are effective tools for helping decision makers to anticipate and prepare to adapt to change.
ContributorsQuay, Ray (Author) / Pijawka, David (Thesis advisor) / Shangraw, Ralph (Committee member) / Holway, James (Committee member) / Arizona State University (Publisher)
Created2011
150342-Thumbnail Image.png
Description
Building Applied Photovoltaics (BAPV) form an essential part of today's solar economy. This thesis is an effort to compare and understand the effect of fan cooling on the temperature of rooftop photovoltaic (PV) modules by comparing two side-by-side arrays (test array and control array) under identical ambient conditions of irradiance,

Building Applied Photovoltaics (BAPV) form an essential part of today's solar economy. This thesis is an effort to compare and understand the effect of fan cooling on the temperature of rooftop photovoltaic (PV) modules by comparing two side-by-side arrays (test array and control array) under identical ambient conditions of irradiance, air temperature, wind speed and wind direction. The lower operating temperature of PV modules due to fan operation mitigates array non uniformity and improves on performance. A crystalline silicon (c-Si) PV module has a light to electrical conversion efficiency of 14-20%. So on a cool sunny day with incident solar irradiance of 1000 W/m2, a PV module with 15% efficiency, will produce about only 150 watts. The rest of the energy is primarily lost in the form of heat. Heat extraction methods for BAPV systems may become increasingly higher in demand as the hot stagnant air underneath the array can be extracted to improve the array efficiency and the extracted low-temperature heat can also be used for residential space heating and water heating. Poly c-Si modules experience a negative temperature coefficient of power at about -0.5% /o C. A typical poly c-Si module would experience power loss due to elevation in temperature, which may be in the range of 25 to 30% for desert conditions such as that of Mesa, Arizona. This thesis investigates the effect of fan cooling on the previously developed thermal models at Arizona State University and on the performance of PV modules/arrays. Ambient conditions are continuously monitored and collected to calculate module temperature using the thermal model and to compare with actually measured temperature of individual modules. Including baseline analysis, the thesis has also looked into the effect of fan on the test array in three stages of 14 continuous days each. Multiple Thermal models are developed in order to identify the effect of fan cooling on performance and temperature uniformity. Although the fan did not prove to have much significant cooling effect on the system, but when combined with wind blocks it helped improve the thermal mismatch both under low and high wind speed conditions.
ContributorsChatterjee, Saurabh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
150421-Thumbnail Image.png
Description
Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in

Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in various configurations is required. A detailed investigation of 1,900 field aged (12-18 years) PV modules deployed in a power plant application was conducted for this study. Analysis was based on the current-voltage (I-V) measurement of all the 1,900 modules individually. I-V curve data of individual modules formed the basis for calculating the performance degradation of the modules. The percentage performance degradation and rates of degradation were compared to an earlier study done at the same plant. The current research was primarily focused on identifying the extent of potential induced degradation (PID) of individual modules with reference to the negative ground potential. To investigate this, the arrangement and connection of the individual modules/strings was examined in detail. The study also examined the extent of underperformance of every series string due to performance mismatch of individual modules in that string. The power loss due to individual module degradation and module mismatch at string level was then compared to the rated value.
ContributorsJaspreet Singh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2011
149859-Thumbnail Image.png
Description
ABSTRACT Research literature relating to the use of humor as a teaching method or curricula specifically designed to include humor was reviewed to investigate the effects of humor on student learning in various environments from elementary schools to post-secondary classrooms. In this multi-method study, four instruments and a humor treatment

ABSTRACT Research literature relating to the use of humor as a teaching method or curricula specifically designed to include humor was reviewed to investigate the effects of humor on student learning in various environments from elementary schools to post-secondary classrooms. In this multi-method study, four instruments and a humor treatment were selected to test the hypothesis that students who receive humor-embedded instruction would perform better on assessments than students who did not receive humor instruction. These assessments were analyzed to show student growth in achievement and memory retention as a result of humor-embedded instruction. Gain scores between a pre- test and two post-tests determined student growth in achievement and memory retention. Gain scores were triangulated with student responses to open-ended interview questions about their experiences with humor in the classroom. The gain score data were not statistically significant between the humor and non- humor groups. For the short-term memory gain scores, the non-humor group received slightly higher gain scores. For long-term memory gain scores, the humor group received higher gain scores. However, the interview data was consistent with the findings of humor research from the last 20 years that humor improves learning directly and indirectly.
ContributorsMcCartney Matthews, Melissa Lee (Author) / Danzig, Arnold (Thesis advisor) / Satter Anderson, Kelly (Committee member) / Davey, Lynn (Committee member) / Arizona State University (Publisher)
Created2011
149923-Thumbnail Image.png
Description
This Qualitative Grounded Theory study is based upon interviews with charter school administrators, teachers and Hispanic parents to gather their perspectives on what practices encourage and elevate the participation of Hispanic parents in schools. There were three Guiding Questions utilized: 1) What culturally compatible methods are utilized in order

This Qualitative Grounded Theory study is based upon interviews with charter school administrators, teachers and Hispanic parents to gather their perspectives on what practices encourage and elevate the participation of Hispanic parents in schools. There were three Guiding Questions utilized: 1) What culturally compatible methods are utilized in order to attract Hispanic parents to choose the particular charter school? 2) What culturally compatible methods does the charter school administration utilize to encourage Hispanic parental involvement in their child's education? 3) What are the benefits of greater Hispanic parent participation for children at these charter schools. Hypotheses were generated from the interviews base upon literature review. For Guiding Queston #1 there were five hypotheses based on a. Personal Interactions/Relationships, b. Environment, c. Language accommodations, d. Communication, e. Family Services. For Guiding Question #2, there were two hypotheses based on: a. Staff experience with Hispanic community and b. Leadership building. For Guiding Question #3, there were three hypotheses based on a. Home/School Partnerships, b. Academics, and c. Physical Presence.
ContributorsRuiz Rosado, Leticia (Author) / Valverde, Leonard A. (Thesis advisor) / Ovndo, Carlos J. (Committee member) / Scribner, Kent P. (Committee member) / Arizona State University (Publisher)
Created2011