This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

158321-Thumbnail Image.png
Description
The Gulf of Mexico (or “Gulf”) is of critical significance to the oil and gas industries’ offshore production, but the potential for accidental petrochemical influx into the Gulf due to such processes is high; two of the largest marine oil spills in history, Pemex's Ixtoc I spill (1979) and British

The Gulf of Mexico (or “Gulf”) is of critical significance to the oil and gas industries’ offshore production, but the potential for accidental petrochemical influx into the Gulf due to such processes is high; two of the largest marine oil spills in history, Pemex's Ixtoc I spill (1979) and British Petroleum's (BP) Deepwater Horizon (2010), have occurred in the region. However, the Gulf is also of critical significance to thousands of unique species, many of which may be irreparably harmed by accidental petrochemical exposure. To better manage the conservation and recovery of marine species in the Gulf ecosystem, a Petrochemical Vulnerability Index was developed to determine the potential impact of a petrochemical influx on Gulf marine fishes, therein providing an objective framework with which to determine the best immediate and long term management strategies for resource managers and decision-makers. The resulting Petrochemical Vulnerability Index (PVI) was developed and applied to all bony fishes and shark/ray species in the Gulf of Mexico (1,670 spp), based on a theoretical petrochemical vulnerability framework developed by peer review. The PVI for fishes embodies three key facets of species vulnerability: likelihood of exposure, individual sensitivity, and population resilience, and comprised of 11 total metrics (Distribution, Longevity, Mobility, Habitat, Pre-Adult Stage Length, Pre-Adult Exposure; Increased Adult Sensitivity Due to UV Light, Increased Pre-Adult Sensitivity Due to UV Light; and Abundance, Reproductive Turnover Rate, Diet/Habitat Specialization). The resulting PVI can be used to guide attention to the species potentially most in need of immediate attention in the event of an oil spill or other petrochemical influx, as well as those species that may require intensive long-term recovery. The scored relative vulnerability rankings can also provide information on species that ought to be the focus of future toxicological research, by indicating which species lack toxicological data, and may potentially experience significant impacts.
ContributorsWoodyard, Megan (Author) / Polidoro, Beth (Thesis advisor) / Saul, Steven (Thesis advisor) / Matson, Cole (Committee member) / Arizona State University (Publisher)
Created2020
171379-Thumbnail Image.png
Description
Plastic pollution poses a threat to the health and well-being of marine mammals across the globe. This paper takes a previously developed trait-based risk assessment framework and applies it to all 118 species of marine mammals worldwide, to help create a relative ranking of vulnerability of species to plastic ingestion

Plastic pollution poses a threat to the health and well-being of marine mammals across the globe. This paper takes a previously developed trait-based risk assessment framework and applies it to all 118 species of marine mammals worldwide, to help create a relative ranking of vulnerability of species to plastic ingestion and entanglement. After extensive data collection on 13 traits related to each species’ relative likelihood of exposure to plastics, species sensitivity to plastic ingestion and entanglement, and overall population resiliency, the initial trait framework was adapted and scored to calculate the relative vulnerability of marine mammals to marine microplastic pollution. Results indicate that the Hawaiian Monk Seal has one of the highest relative vulnerabilities to macroplastic pollution among all marine mammals. Furthermore, this exercise highlighted several areas where future research is needed, including expanding the framework to microplastics, applying the framework to coastal human populations, and further investigation of unknown life history traits of various marine mammals.
ContributorsFredette-Roman, Cassidy (Author) / Polidoro, Beth (Thesis advisor) / Rolsky, Charles (Committee member) / Minteer, Ben (Committee member) / Arizona State University (Publisher)
Created2022
171885-Thumbnail Image.png
Description
Advanced technology has increased access to Antarctica; consequently, there has been an increase in research and tourism. The production of the new technology and the increased number of individuals visiting can increase the presence of persistent organic pollutants and microplastic within Antarctic soil. Studies have focused primarily on identifying these

Advanced technology has increased access to Antarctica; consequently, there has been an increase in research and tourism. The production of the new technology and the increased number of individuals visiting can increase the presence of persistent organic pollutants and microplastic within Antarctic soil. Studies have focused primarily on identifying these pollutants in high human impact areas with perhaps an assumption that low human impact areas would have lower concentrations of pollutants. The object of this paper, therefore, was to test the hypothesis that higher concentrations of persistent organic pollutants and microplastic are found in soils collected near research stations and tourist areas, as opposed to sites that are further from stations and have less direct human impact. Soil samples were collected along a 1,500 km transect of the Scotia Arch and Antarctic Peninsula from three high human impact sites and three low human impact sites to compare the concentration of contaminates identified within the soil. The presence and quantities of microplastic were identified using Nile Red and fluorescence microscopy, while gas chromatography-mass spectrometry was used to detect polychlorinated biphenyls, pesticides, polycyclic aromatic hydrocarbons, n-alkane, and phthalates. Although varying contaminate concentration levels were found at all six sights, counter to the hypothesis, there were no clear patterns of increasing pollutants with increasing human activities. These findings could imply that global sources of pollutants can increase local pollutants indicating the best way to solve any pollution problem is through a global lens.
ContributorsCarroll, Kenneth Charles (Author) / Polidoro, Beth (Thesis advisor) / Kinzig, Ann (Thesis advisor) / Ball, Becky (Committee member) / Arizona State University (Publisher)
Created2022
158549-Thumbnail Image.png
Description
Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter),

Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter), which have been found to pollute virtually every marine and terrestrial ecosystem on the planet. This thesis explored the transfer of plastic pollutants from consumer products into the built water environment and ultimately into global aquatic and terrestrial ecosystems.

A literature review demonstrated that municipal sewage sludge produced by wastewater treatment plants around the world contains detectable quantities of microplastics. Application of sewage sludge on land was shown to represent a mechanism for transfer of microplastics from wastewater into terrestrial environments, with some countries reporting as high as 113 ± 57 microplastic particles per gram of dry sludge.

To address the notable shortcoming of inconsistent reporting practices for microplastic pollution, this thesis introduced a novel, online calculator that converts the number of plastic particles into the unambiguous metric of mass, thereby making global studies on microplastic pollution directly comparable.

This thesis concludes with an investigation of a previously unexplored and more personal source of plastic pollution, namely the disposal of single-use contact lenses and an assessment of the magnitude of this emerging source of environmental pollution. Using an online survey aimed at quantifying trends with the disposal of lenses in the US, it was discovered that 20 ± 0.8% of contact lens wearers flushed their used lenses down the drain, amounting to 44,000 ± 1,700 kg y-1 of lens dry mass discharged into US wastewater.

From the results it is concluded that conventional and medical microplastics represent a significant global source of pollution and a long-term threat to ecosystems around the world. Recommendations are provided on how to limit the entry of medical microplastics into the built water environment to limit damage to ecosystems worldwide.
ContributorsRolsky, Charles (Author) / Halden, Rolf (Thesis advisor) / Green, Matthew (Committee member) / Neuer, Susanne (Committee member) / Polidoro, Beth (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2020
158285-Thumbnail Image.png
Description
Cetacean-based ecotourism is a popular activity and an important source of revenue for many countries. Whale watching, a subset of cetacean-based ecotourism, is vital to supporting conservation efforts and provides numerous benefits to local communities including educational opportunities and job creation. However, the sustainability of whale-based ecotourism depends on the

Cetacean-based ecotourism is a popular activity and an important source of revenue for many countries. Whale watching, a subset of cetacean-based ecotourism, is vital to supporting conservation efforts and provides numerous benefits to local communities including educational opportunities and job creation. However, the sustainability of whale-based ecotourism depends on the behavior and health of whale populations and is therefore vital that ecotourism industries consider the impact their activities have on whale reproductive behavior. To address this statement, behavioral data (e.g. direction change, breaching, slap behaviors, diving, and spy hops) were collected from humpback whales (Megaptera novaeangliae) in Las Perlas Archipelago off the Pacific coast of Panama to determine if vessel presence had an influence on whale behaviors. Studies were recorded during their breeding season from August through September in 2019. Based on 47 behavioral observations, higher boat density corresponded with humpback whales changing direction which is believed to be a sign of disturbance. This result is important given Panamanian regulations implemented on February 13 of 2007 prohibit whale-based tourism from disturbing whales, which is measured as changes in behavior. Because there is no systematic monitoring of whale watching activity to enforce the regulations, there is currently little compliance among tour operators. The integration of animal behavior research into management planning will result in more effective regulation and compliance of conservation policies.
ContributorsAmrein, Arielle (Author) / Gerber, Leah R. (Thesis advisor) / Guzman, Hector M (Committee member) / Polidoro, Beth (Committee member) / Arizona State University (Publisher)
Created2020
191008-Thumbnail Image.png
Description
Heavy metals and persistent organic pollutants contribute to human health risks worldwide. Among the most common routes of exposure to pollutants for humans are through the consumption of contaminated water and food, with fish being among the greatest vectors for ingestion of heavy metals in humans, particularly mercury.This dissertation consists

Heavy metals and persistent organic pollutants contribute to human health risks worldwide. Among the most common routes of exposure to pollutants for humans are through the consumption of contaminated water and food, with fish being among the greatest vectors for ingestion of heavy metals in humans, particularly mercury.This dissertation consists of three chapters with a central theme of investigating heavy metal and persistent organic pollutant concentrations in fish and corned beef, which are two commonly consumed food items in American Samoa. A literature review illustrated that historically the primary pollutants of concern in fish muscle tissue from American Samoa have been mercury, arsenic, and polycyclic aromatic hydrocarbon mixtures. To better understand the changes in heavy metals and persistent organic pollutants in fish, this study reports an updated data set, comparing concentrations in pollutants as they have changed over time. To further investigate pollutants in fish tissue, 77 locally caught and commonly consumed fish were analyzed for heavy metals and persistent organic pollutants, and baseline human health risk assessments were calculated for contaminants that had available oral reference doses. While in American Samoa collecting fish for contaminant analyses, it was realized that canned corned beef appeared to be more commonly consumed than fresh fish. An IRB approved consumption survey revealed that 89% of American Samoan adults regularly consume fish, which is the same percentage of people that reported eating canned corned beef, indicating a dramatic increase in this food item to their diet since its introduction in the 20th century. Results of this study indicate that fish muscle tissue generally has higher heavy metal concentrations than canned corned beef, and that mercury continues to be a main contaminant of concern when consuming fresh and canned fish in American Samoa. While none of the heavy metal concentrations in corned beef exceeded calculated action levels, these foods might contribute to negative health outcomes in other ways. One of the main findings of this study is that either the presence or the ability to detect persistent organic pollutant concentrations are increasing in fish tissue and should be periodically monitored to adequately reflect current conditions.
ContributorsLewis, Tiffany Beth (Author) / Polidoro, Beth (Thesis advisor) / Neuer, Susanne (Thesis advisor) / Halden, Rolf (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2023