This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

187832-Thumbnail Image.png
Description
Anthropogenic linear infrastructures, including roads, railways, and canals, provide important resources to humans. However, linear infrastructures can reduce landscape connectivity for many wildlife populations. To mitigate these effects, crossing structures and crossing areas can facilitate animal movement across linear infrastructures. Compared to roads, little research has evaluated the factors influencing

Anthropogenic linear infrastructures, including roads, railways, and canals, provide important resources to humans. However, linear infrastructures can reduce landscape connectivity for many wildlife populations. To mitigate these effects, crossing structures and crossing areas can facilitate animal movement across linear infrastructures. Compared to roads, little research has evaluated the factors influencing wildlife use of crossings along major canals. The Central Arizona Project (CAP) canal is a major linear feature in Arizona, and exhibits multiple types of crossing structures and areas. In Chapter 1, the objective was to evaluate the spatial (i.e., landscape features, crossing attributes) and temporal (i.e., season, time of day) factors influencing wildlife use of overpasses (n = 43) and siphons (n = 13) along the CAP canal. Using remote wildlife cameras, 17 species were detected using overpasses and siphons along the CAP canal during one year. Animals exhibited species-specific preferences for landscape features, such as topography and vegetation, and canal crossing types, although many species decreased use of overpasses associated with human development. In Chapter 2, the objective was to evaluate the influence of human activities at overpasses on use by mule deer across multiple analytical scales. Mule deer occupancy and relative habitat use at overpasses decreased in relation to human activity, including recreation. In Chapter 3, the objective was to evaluate seasonal use of underpasses (n = 12) by mammals, reptiles, amphibians, and invertebrates. Using specialized remote wildlife cameras, 30 species were detected using underpasses along the CAP canal across three seasons, and some animals exhibited variable crossing frequencies in relation to the summer monsoon season. Overall in this project, several species of small to large-sized mammals, reptiles, amphibians, and invertebrates used a variety of crossing types, including overpasses and underpasses, along a major canal. Ultimately, this study suggests that to promote landscape connectivity for the wildlife community associated with canals and other types of linear infrastructures, it is important to provide a variety of crossing types that occur across a range of landscape characteristics.
ContributorsHamilton, Kaela M (Author) / Lewis, Jesse S (Thesis advisor) / Bateman, Heather L (Committee member) / Arizona State University (Publisher)
Created2023
187732-Thumbnail Image.png
Description
Environmental variation impacts physiological performance in animals. As a result, many animals thermoregulate to buffer unfavorable thermal variation in their environments. Animals are only expected to thermoregulate when the benefits outweigh the costs, although both are difficult to quantify. I examined how habitats and organismal factors shape thermoregulation and physiological

Environmental variation impacts physiological performance in animals. As a result, many animals thermoregulate to buffer unfavorable thermal variation in their environments. Animals are only expected to thermoregulate when the benefits outweigh the costs, although both are difficult to quantify. I examined how habitats and organismal factors shape thermoregulation and physiological performance in lizards. I found that habitat structure shapes opportunities for thermoregulation in two species of Anolis lizards. In dense tropical rainforests where there is low habitat heterogeneity, the range of available microclimates is narrow. Consequently, lizards in the tropics tend to be thermal specialists – performing best over a narrow range of temperatures. This phenotype should lead to decreased performance under climate warming. I then investigated the relationship between body condition, feeding, and thermoregulation in Yarrow’s spiny lizards (Sceloporus jarrovii) using lab- and field-based experiments. In the lab experiment, when lizards were observed in an artificial thermal gradient, neither body condition nor feeding status influenced the mean body temperature. When simulated costs of thermoregulation were higher, all lizards reduced thermoregulation similarly. However, when lizards were observed in an outdoor thermal arena, individuals with lower body condition decreased thermoregulatory performance, resulting in a lower mean body temperature. Animals with poor body condition may face greater risk of predation when thermoregulating. Finally, I conducted a comparative analysis to quantify relationships between the potential for thermoregulatory performance and empirical measures of productivity (i.e., growth rates and reproductive output) in lizard populations. A model that assumes lizards are active whenever preferred temperatures were available overestimated the duration that a lizard could maintain a preferred body temperature. As such, studies equating predicted thermoregulatory performance with fitness in the context of climate change should be interpreted cautiously. Overall, environmental factors and organismal traits shape the thermoregulatory behavior of animals, ultimately affecting their physiological performance and fitness. Biologists should consider these relationships when modeling the impacts of climate change on future performance.
ContributorsNeel, Lauren (Author) / Angilletta, Michael J (Thesis advisor) / Bateman, Heather L (Committee member) / DeNardo, Dale F (Committee member) / Sears, Michael W (Committee member) / Arizona State University (Publisher)
Created2023
157704-Thumbnail Image.png
Description
Although many studies have identified environmental factors as primary drivers of bird richness and abundance, there is still uncertainty about the extent to which climate, topography and vegetation influence richness and abundance patterns seen in local extents of the northern Sonoran Desert. I investigated how bird richness and abundance differed

Although many studies have identified environmental factors as primary drivers of bird richness and abundance, there is still uncertainty about the extent to which climate, topography and vegetation influence richness and abundance patterns seen in local extents of the northern Sonoran Desert. I investigated how bird richness and abundance differed between years and seasons and which environmental variables most influenced the patterns of richness and abundance in the Greater Phoenix Metropolitan Area.

I compiled a geodatabase of climate, bioclimatic (interactions between precipitation and temperature), vegetation, soil, and topographical variables that are known to influence both richness and abundance and used 15 years of bird point count survey data from urban and non-urban sites established by Central Arizona–Phoenix Long-Term Ecological Research project to test that relationship. I built generalized linear models (GLM) to elucidate the influence of each environmental variable on richness and abundance values taken from 47 sites. I used principal component analysis (PCA) to reduce 43 environmental variables to 9 synthetic factors influenced by measures of vegetation, climate, topography, and energy. I also used the PCA to identify uncorrelated raw variables and modeled bird richness and abundance with these uncorrelated environmental variables (EV) with GLM.

I found that bird richness and abundance were significantly different between seasons, but that richness and winter abundance were not significantly different across years. Bird richness was most influenced by soil characteristics and vegetation while abundance was most influenced by vegetation and climate. Models using EV as independent variables consistently outperformed those models using synthetically produced components from PCA. The results suggest that richness and abundance are both driven by climate and aspects of vegetation that may also be influenced by climate such as total annual precipitation and average temperature of the warmest quarter. Annual oscillations of bird richness and abundance throughout the urban Phoenix area seem to be strongly associated with climate and vegetation.
ContributorsBoehme, Cameron (Author) / Albuquerque, Fabio Suzart (Thesis advisor) / Bateman, Heather L (Committee member) / Saul, Steven E (Committee member) / Arizona State University (Publisher)
Created2019
158622-Thumbnail Image.png
Description
Land use change driven by human population expansion continues to influence

the integrity and configuration of riparian corridors worldwide. Wildlife viability in semi-arid regions depend heavily on the connectivity of riparian corridors, since water is the primary limiting resource. The Madrean Archipelago in northern Mexico and southwestern United States (US) is

Land use change driven by human population expansion continues to influence

the integrity and configuration of riparian corridors worldwide. Wildlife viability in semi-arid regions depend heavily on the connectivity of riparian corridors, since water is the primary limiting resource. The Madrean Archipelago in northern Mexico and southwestern United States (US) is a biodiversity hotspot that supports imperiled wildlife like jaguar (Panthera onca) and ocelot (Leopardus pardalis). Recent and ongoing infrastructure developments in the historically understudied US-México borderlands region, such as the border wall and expansion of Federal Highway 2, are altering wildlife movement and disconnecting essential habitat.

I used wildlife cameras to assess species occupancy, abundance, and related habitat variables affecting the use of washes as corridors for mammals in semi-arid Los Ojos (LO), a private ranch within a 530 km2 priority conservation area in Sonora, México located south of the border and Federal Highway 2. From October 2018 to April 2019, I deployed 21 wildlife cameras in five different riparian corridors within LO. I used single- season occupancy models and Royal Nichols abundance models to explore the relationship between habitat variables and use of riparian corridors by mammal communities of conservation concern within this region.

Twenty-one mammal species were recorded in the study area, including American black bear (Ursus americanus), white-tailed deer (Odocoileus virginianus) and the first sighting of jaguar (Panthera onca) in this region in 25 years. For the 11 medium- and large-bodied mammals recorded, habitat variables related to perennial river characteristics (distance to river, weekly water, and site width) and remoteness (distance from highway, elevation, and NDVI) were important for occupancy, but the direction of the relationship varied by species. For commonly observed species such as mountain lion (Puma concolor) and white-nosed coati (Nasua narica), topographic variety was highly informative for species abundance. These results highlight the importance of habitat diversity when identifying corridors for future protection to conserve wildlife communities in semi-arid regions. Additionally, this study provides robust evidence in support of mitigation measures (e.g. funnel fencing, over- or under- passes) along Federal Highway 2, and other barriers such as the border wall, to facilitate wildlife connectivity.
ContributorsRagan, Kinley (Author) / Hall, Sharon J (Thesis advisor) / Schipper, Jan (Thesis advisor) / Bateman, Heather L (Committee member) / Arizona State University (Publisher)
Created2020
193406-Thumbnail Image.png
Description
Climate change is becoming an ever-increasing issue for conservation efforts, especially in dryland ecosystems where natural resources are already scarce for native species. This is increasingly true for native amphibians in the area, which are already experiencing threats to their range by human intervention, disease, and invasive species. The objectives

Climate change is becoming an ever-increasing issue for conservation efforts, especially in dryland ecosystems where natural resources are already scarce for native species. This is increasingly true for native amphibians in the area, which are already experiencing threats to their range by human intervention, disease, and invasive species. The objectives of this study are to 1) identify how climate change impacts the distribution of native and non-native amphibian species and high priority conservation areas (HPCA) in the drylands of the Southwest United States and northern Mexico; 2) Describe the relationship between environmental variables and spatial configurations of HPCA; 3) Explore how amphibians distributions and HPCA may respond under climate change scenarios; 4) Investigate the projected change in drivers of climate change; 5) Investigate how climate change will impact the critical areas for conservation of native amphibians. Distribution maps were obtained for the 220 resident native and non-native amphibian species, and complementarity-based analysis was used to identify HPCA for amphibians. We used 34 predictor variables grouped into three categories, and ranked based on their influence in determining HPCA. Finally, Zonation, species richness, and rarity-weighted richness (RWR) were evaluated to identify complementarity to HPCA. Results show that water-related variables and -related variables such as temperature and solar radiation were the best indicators of amphibian conservation HPCA. Zonation also proved to be the best method for identifying these HPCA. This study is the first to investigate the impact of climate change on site complementarity. The results from this study will open new inquiries for biogeography and conservation biology and also have a functional use for natural resource managers in the United States and Mexico to monitor changes to these areas and plan for recovery if needed.
ContributorsJohnson, Jared Everett (Author) / de Albuquerque, Fabio Suzart (Thesis advisor) / Bateman, Heather L (Committee member) / Stein, Adam C (Committee member) / Arizona State University (Publisher)
Created2024