This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

149754-Thumbnail Image.png
Description
A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable for scheduling. However, the production scheduling of the back-end process

A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable for scheduling. However, the production scheduling of the back-end process is still very difficult due to the wide product mix, large number of parallel machines, product family related setups, machine-product qualification, and weekly demand consisting of thousands of lots. In this research, a novel mixed-integer-linear-programming (MILP) model is proposed for the batch production scheduling of a semiconductor back-end facility. In the MILP formulation, the manufacturing process is modeled as a flexible flow line with bottleneck stages, unrelated parallel machines, product family related sequence-independent setups, and product-machine qualification considerations. However, this MILP formulation is difficult to solve for real size problem instances. In a semiconductor back-end facility, production scheduling usually needs to be done every day while considering updated demand forecast for a medium term planning horizon. Due to the limitation on the solvable size of the MILP model, a deterministic scheduling system (DSS), consisting of an optimizer and a scheduler, is proposed to provide sub-optimal solutions in a short time for real size problem instances. The optimizer generates a tentative production plan. Then the scheduler sequences each lot on each individual machine according to the tentative production plan and scheduling rules. Customized factory rules and additional resource constraints are included in the DSS, such as preventive maintenance schedule, setup crew availability, and carrier limitations. Small problem instances are randomly generated to compare the performances of the MILP model and the deterministic scheduling system. Then experimental design is applied to understand the behavior of the DSS and identify the best configuration of the DSS under different demand scenarios. Product-machine qualification decisions have long-term and significant impact on production scheduling. A robust product-machine qualification matrix is critical for meeting demand when demand quantity or mix varies. In the second part of this research, a stochastic mixed integer programming model is proposed to balance the tradeoff between current machine qualification costs and future backorder costs with uncertain demand. The L-shaped method and acceleration techniques are proposed to solve the stochastic model. Computational results are provided to compare the performance of different solution methods.
ContributorsFu, Mengying (Author) / Askin, Ronald G. (Thesis advisor) / Zhang, Muhong (Thesis advisor) / Fowler, John W (Committee member) / Pan, Rong (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
158263-Thumbnail Image.png
Description
Due to environmental and geopolitical reasons, many countries are embracing electric vehicles (EVs) as an alternative to gasoline powered automobiles. Other alternative-fuel vehicles (AFVs) powered by compressed gas, hydrogen or biodiesel have also been tested for replacing gasoline powered vehicles. However, since the associated refueling infrastructure of AFVs is sparse

Due to environmental and geopolitical reasons, many countries are embracing electric vehicles (EVs) as an alternative to gasoline powered automobiles. Other alternative-fuel vehicles (AFVs) powered by compressed gas, hydrogen or biodiesel have also been tested for replacing gasoline powered vehicles. However, since the associated refueling infrastructure of AFVs is sparse and is gradually being built, the distance between recharging points (RPs) becomes a crucial prohibitive attribute in attracting drivers to use such vehicles. Optimally locating RPs will both increase demand and help in developing the refueling infrastructure.

The major emphasis in this dissertation is the development of theories and associated algorithms for a new set of location problems defined on continuous network space related to siting multiple RPs for range limited vehicles.

This dissertation covers three optimization problems: locating multiple RPs on a line network, locating multiple RPs on a comb tree network, and locating multiple RPs on a general tree network. For each of the three problems, finding the minimum number of RPs needed to refuel all Origin-Destination (O-D) flows is considered as the first objective. For this minimum number, the location objective is to locate this number of RPs to minimize weighted sum of the travelling distance for all O-D flows. Different exact algorithms are proposed to solve each of the three algorithms.

In the first part of this dissertation, the simplest case of locating RPs on a line network is addressed. Scenarios include single one-way O-D pair, multiple one-way O-D pairs, round trips, etc. A mixed integer program with linear constraints and quartic objective function is formulated. A finite dominating set (FDS) is identified, and based on the existence of FDS, the problem is formulated as a shortest path problem. In the second part, the problem is extended to comb tree networks. Finally, the problem is extended to general tree networks. The extension to a probabilistic version of the location problem is also addressed.
ContributorsSong, Yazhu (Author) / Mirchandani, Pitu B. (Thesis advisor) / Wu, Teresa (Committee member) / Sefair, Jorge A (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2020