This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

191492-Thumbnail Image.png
Description
Phase-field (PF) models are one of the most powerful tools to simulate microstructural evolution in metallic materials, polymers, and ceramics. However, existing PF approaches rely on rigorous mathematical model development, sophisticated numerical schemes, and high-performance computing for accuracy. Although recently developed surrogate microstructure models employ deep-learning techniques and reconstruction of

Phase-field (PF) models are one of the most powerful tools to simulate microstructural evolution in metallic materials, polymers, and ceramics. However, existing PF approaches rely on rigorous mathematical model development, sophisticated numerical schemes, and high-performance computing for accuracy. Although recently developed surrogate microstructure models employ deep-learning techniques and reconstruction of microstructures from lower-dimensional data, their accuracy is fairly limited as spatio-temporal information is lost in the pursuit of dimensional reduction. Given these limitations, a novel data-driven emulator (DDE) for extrapolation prediction of microstructural evolution is presented, which combines an image-based convolutional and recurrent neural network (CRNN) with tensor decomposition, while leveraging previously obtained PF datasets for training. To assess the robustness of DDE, the emulation sequence and the scaling behavior with phase-field simulations for several noisy initial states are compared. In conclusion, the effectiveness of the microstructure emulation technique is explored in the context of accelerating runtime, along with an emphasis on its trade-off with accuracy.Meanwhile, an interpolation DDE has also been tested, which is based on obtaining a low-dimensional representation of the microstructures via tensor decomposition and subsequently predicting the microstructure evolution in the low-dimensional space using Gaussian process regression (GPR). Once the microstructure predictions are obtained in the low-dimensional space, a hybrid input-output phase retrieval algorithm will be employed to reconstruct the microstructures. As proof of concept, the results on microstructure prediction for spinodal decomposition are presented, although the method itself is agnostic of the material parameters. Results show that GPR-based DDE model are able to predict microstructure evolution sequences that closely resemble the true microstructures (average normalized mean square of 6.78 × 10−7) at time scales half of that employed in obtaining training data. This data-driven microstructure emulator opens new avenues to predict the microstructural evolution by leveraging phase-field simulations and physical experimentation where the time resolution is often quite large due to limited resources and physical constraints, such as the phase coarsening experiments previously performed in microgravity. Future work will also be discussed and demonstrate the intended utilization of these two approaches for 3D microstructure prediction through their combined application.
ContributorsWu, Peichen (Author) / Ankit, Kumar (Thesis advisor) / Iquebal, Ashif (Committee member) / Jiao, Yang (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2024
158807-Thumbnail Image.png
Description
Ultra High Performance (UHP) cementitious binders are a class of cement-based materials with high strength and ductility, designed for use in precast bridge connections, bridge superstructures, high load-bearing structural members like columns, and in structural repair and strengthening. This dissertation aims to elucidate the chemo-mechanical relationships in complex UHP binders

Ultra High Performance (UHP) cementitious binders are a class of cement-based materials with high strength and ductility, designed for use in precast bridge connections, bridge superstructures, high load-bearing structural members like columns, and in structural repair and strengthening. This dissertation aims to elucidate the chemo-mechanical relationships in complex UHP binders to facilitate better microstructure-based design of these materials and develop machine learning (ML) models to predict their scale-relevant properties from microstructural information.To establish the connection between micromechanical properties and constitutive materials, nanoindentation and scanning electron microscopy experiments are performed on several cementitious pastes. Following Bayesian statistical clustering, mixed reaction products with scattered nanomechanical properties are observed, attributable to the low degree of reaction of the constituent particles, enhanced particle packing, and very low water-to-binder ratio of UHP binders. Relating the phase chemistry to the micromechanical properties, the chemical intensity ratios of Ca/Si and Al/Si are found to be important parameters influencing the incorporation of Al into the C-S-H gel.
ML algorithms for classification of cementitious phases are found to require only the intensities of Ca, Si, and Al as inputs to generate accurate predictions for more homogeneous cement pastes. When applied to more complex UHP systems, the overlapping chemical intensities in the three dominant phases – Ultra High Stiffness (UHS), unreacted cementitious replacements, and clinker – led to ML models misidentifying these three phases. Similarly, a reduced amount of data available on the hard and stiff UHS phases prevents accurate ML regression predictions of the microstructural phase stiffness using only chemical information. The use of generic virtual two-phase microstructures coupled with finite element analysis is also adopted to train MLs to predict composite mechanical properties. This approach applied to three different representations of composite materials produces accurate predictions, thus providing an avenue for image-based microstructural characterization of multi-phase composites such UHP binders. This thesis provides insights into the microstructure of the complex, heterogeneous UHP binders and the utilization of big-data methods such as ML to predict their properties. These results are expected to provide means for rational, first-principles design of UHP mixtures.
ContributorsFord, Emily Lucile (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Hoover, Christian G. (Committee member) / Maneparambil, Kailas (Committee member) / Arizona State University (Publisher)
Created2020