This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 10
Filtering by

Clear all filters

151700-Thumbnail Image.png
Description
Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance

Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance of two velocity estimation schemes used in Doppler processing systems, namely, directional velocity estimation (DVE) and conventional velocity estimation (CVE). We find that DVE provides better estimation performance and is the only functioning method when the beam to flow angle is large. Unfortunately, DVE is computationally expensive and also requires divisions and square root operations that are hard to implement. We propose two approximation techniques to replace these computations. The simulation results on cyst images show that the proposed approximations do not affect the estimation performance. We also study backend processing which includes envelope detection, log compression and scan conversion. Three different envelope detection methods are compared. Among them, FIR based Hilbert Transform is considered the best choice when phase information is not needed, while quadrature demodulation is a better choice if phase information is necessary. Bilinear and Gaussian interpolation are considered for scan conversion. Through simulations of a cyst image, we show that bilinear interpolation provides comparable contrast-to-noise ratio (CNR) performance with Gaussian interpolation and has lower computational complexity. Thus, bilinear interpolation is chosen for our system.
ContributorsWei, Siyuan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Frakes, David (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
151544-Thumbnail Image.png
Description
Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse

Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse modeling, data is represented as a sparse linear combination of atoms from a "dictionary" matrix. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. With the growing need to adapt models for large scale data, it is important to design dictionaries that can model the entire data space and not just the samples considered. By exploiting the relation of dictionary learning to 1-D subspace clustering, a multilevel dictionary learning algorithm is developed, and it is shown to outperform conventional sparse models in compressed recovery, and image denoising. Theoretical aspects of learning such as algorithmic stability and generalization are considered, and ensemble learning is incorporated for effective large scale learning. In addition to building strategies for efficiently implementing 1-D subspace clustering, a discriminative clustering approach is designed to estimate the unknown mixing process in blind source separation. By exploiting the non-linear relation between the image descriptors, and allowing the use of multiple features, sparse methods can be made more effective in recognition problems. The idea of multiple kernel sparse representations is developed, and algorithms for learning dictionaries in the feature space are presented. Using object recognition experiments on standard datasets it is shown that the proposed approaches outperform other sparse coding-based recognition frameworks. Furthermore, a segmentation technique based on multiple kernel sparse representations is developed, and successfully applied for automated brain tumor identification. Using sparse codes to define the relation between data samples can lead to a more robust graph embedding for unsupervised clustering. By performing discriminative embedding using sparse coding-based graphs, an algorithm for measuring the glomerular number in kidney MRI images is developed. Finally, approaches to build dictionaries for local sparse coding of image descriptors are presented, and applied to object recognition and image retrieval.
ContributorsJayaraman Thiagarajan, Jayaraman (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
153334-Thumbnail Image.png
Description
Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications.

In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultrasound

Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications.

In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultrasound a reality are presented. First, image enhancement methods to improve signal-to-noise ratio (SNR) are proposed. These include virtual source firing techniques and a low overhead digital front-end architecture using orthogonal chirps and orthogonal Golay codes.

Second, algorithm-architecture co-design techniques to reduce the power consumption of 3-D SAU imaging systems is presented. These include (i) a subaperture multiplexing strategy and the corresponding apodization method to alleviate the signal bandwidth bottleneck, and (ii) a highly efficient iterative delay calculation method to eliminate complex operations such as multiplications, divisions and square-root in delay calculation during beamforming. These techniques were used to define Sonic Millip3De, a 3-D die stacked architecture for digital beamforming in SAU systems. Sonic Millip3De produces 3-D high resolution images at 2 frames per second with system power consumption of 15W in 45nm technology.

Third, a new beamforming method based on separable delay decomposition is proposed to reduce the computational complexity of the beamforming unit in an SAU system. The method is based on minimizing the root-mean-square error (RMSE) due to delay decomposition. It reduces the beamforming complexity of a SAU system by 19x while providing high image fidelity that is comparable to non-separable beamforming. The resulting modified Sonic Millip3De architecture supports a frame rate of 32 volumes per second while maintaining power consumption of 15W in 45nm technology.

Next a 3-D plane-wave imaging system that utilizes both separable beamforming and coherent compounding is presented. The resulting system has computational complexity comparable to that of a non-separable non-compounding baseline system while significantly improving contrast-to-noise ratio and SNR. The modified Sonic Millip3De architecture is now capable of generating high resolution images at 1000 volumes per second with 9-fire-angle compounding.
ContributorsYang, Ming (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Karam, Lina (Committee member) / Frakes, David (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015
153006-Thumbnail Image.png
Description
The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation

The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation to real clinical domains places heavy demands on their safety and reliability, both of which are not entirely portrayed by presently existing implantable recording solutions. In an attempt to lower these barriers, alternative wireless radar backscattering techniques are proposed to render the technical burdens of the implant chip to entirely passive neurorecording processes that transpire in the absence of formal integrated power sources or powering schemes along with any active circuitry. These radar-like wireless backscattering mechanisms are used to conceive of fully passive neurorecording operations of an implantable microsystem. The fully passive device potentially manifests inherent advantages over current wireless implantable and wired recording systems: negligible heat dissipation to reduce risks of brain tissue damage and minimal circuitry for long term reliability as a chronic implant. Fully passive neurorecording operations are realized via intrinsic nonlinear mixing properties of the varactor diode. These mixing and recording operations are directly activated by wirelessly interrogating the fully passive device with a microwave carrier signal. This fundamental carrier signal, acquired by the implant antenna, mixes through the varactor diode along with the internal targeted neuropotential brain signals to produce higher frequency harmonics containing the targeted neuropotential signals. These harmonics are backscattered wirelessly to the external interrogator that retrieves and recovers the original neuropotential brain signal. The passive approach removes the need for internal power sources and may alleviate heat trauma and reliability issues that limit practical implementation of existing implantable neurorecorders.
ContributorsSchwerdt, Helen N (Author) / Chae, Junseok (Thesis advisor) / Miranda, Félix A. (Committee member) / Phillips, Stephen (Committee member) / Towe, Bruce C (Committee member) / Balanis, Constantine A (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2014
151092-Thumbnail Image.png
Description
Recent advances in camera architectures and associated mathematical representations now enable compressive acquisition of images and videos at low data-rates. While most computer vision applications of today are composed of conventional cameras, which collect a large amount redundant data and power hungry embedded systems, which compress the collected data for

Recent advances in camera architectures and associated mathematical representations now enable compressive acquisition of images and videos at low data-rates. While most computer vision applications of today are composed of conventional cameras, which collect a large amount redundant data and power hungry embedded systems, which compress the collected data for further processing, compressive cameras offer the advantage of direct acquisition of data in compressed domain and hence readily promise to find applicability in computer vision, particularly in environments hampered by limited communication bandwidths. However, despite the significant progress in theory and methods of compressive sensing, little headway has been made in developing systems for such applications by exploiting the merits of compressive sensing. In such a setting, we consider the problem of activity recognition, which is an important inference problem in many security and surveillance applications. Since all successful activity recognition systems involve detection of human, followed by recognition, a potential fully functioning system motivated by compressive camera would involve the tracking of human, which requires the reconstruction of atleast the initial few frames to detect the human. Once the human is tracked, the recognition part of the system requires only the features to be extracted from the tracked sequences, which can be the reconstructed images or the compressed measurements of such sequences. However, it is desirable in resource constrained environments that these features be extracted from the compressive measurements without reconstruction. Motivated by this, in this thesis, we propose a framework for understanding activities as a non-linear dynamical system, and propose a robust, generalizable feature that can be extracted directly from the compressed measurements without reconstructing the original video frames. The proposed feature is termed recurrence texture and is motivated from recurrence analysis of non-linear dynamical systems. We show that it is possible to obtain discriminative features directly from the compressed stream and show its utility in recognition of activities at very low data rates.
ContributorsKulkarni, Kuldeep Sharad (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
151204-Thumbnail Image.png
Description
There is a growing interest for improved high-accuracy camera calibration methods due to the increasing demand for 3D visual media in commercial markets. Camera calibration is used widely in the fields of computer vision, robotics and 3D reconstruction. Camera calibration is the first step for extracting 3D data from a

There is a growing interest for improved high-accuracy camera calibration methods due to the increasing demand for 3D visual media in commercial markets. Camera calibration is used widely in the fields of computer vision, robotics and 3D reconstruction. Camera calibration is the first step for extracting 3D data from a 2D image. It plays a crucial role in computer vision and 3D reconstruction due to the fact that the accuracy of the reconstruction and 3D coordinate determination relies on the accuracy of the camera calibration to a great extent. This thesis presents a novel camera calibration method using a circular calibration pattern. The disadvantages and issues with existing state-of-the-art methods are discussed and are overcome in this work. The implemented system consists of techniques of local adaptive segmentation, ellipse fitting, projection and optimization. Simulation results are presented to illustrate the performance of the proposed scheme. These results show that the proposed method reduces the error as compared to the state-of-the-art for high-resolution images, and that the proposed scheme is more robust to blur in the imaged calibration pattern.
ContributorsPrakash, Charan Dudda (Author) / Karam, Lina J (Thesis advisor) / Frakes, David (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012
151120-Thumbnail Image.png
Description
Diabetic retinopathy (DR) is a common cause of blindness occurring due to prolonged presence of diabetes. The risk of developing DR or having the disease progress is increasing over time. Despite advances in diabetes care over the years, DR remains a vision-threatening complication and one of the leading causes of

Diabetic retinopathy (DR) is a common cause of blindness occurring due to prolonged presence of diabetes. The risk of developing DR or having the disease progress is increasing over time. Despite advances in diabetes care over the years, DR remains a vision-threatening complication and one of the leading causes of blindness among American adults. Recent studies have shown that diagnosis based on digital retinal imaging has potential benefits over traditional face-to-face evaluation. Yet there is a dearth of computer-based systems that can match the level of performance achieved by ophthalmologists. This thesis takes a fresh perspective in developing a computer-based system aimed at improving diagnosis of DR images. These images are categorized into three classes according to their severity level. The proposed approach explores effective methods to classify new images and retrieve clinically-relevant images from a database with prior diagnosis information associated with them. Retrieval provides a novel way to utilize the vast knowledge in the archives of previously-diagnosed DR images and thereby improve a clinician's performance while classification can safely reduce the burden on DR screening programs and possibly achieve higher detection accuracy than human experts. To solve the three-class retrieval and classification problem, the approach uses a multi-class multiple-instance medical image retrieval framework that makes use of spectrally tuned color correlogram and steerable Gaussian filter response features. The results show better retrieval and classification performances than prior-art methods and are also observed to be of clinical and visual relevance.
ContributorsChandakkar, Parag Shridhar (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
151306-Thumbnail Image.png
Description
Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of

Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of microscale sensors that are used for sensing applications, ranging from whole-body monitoring down to molecular sensing. Unfortunately, sensors are often developed without regard to how they will be integrated into biological systems. The complexities of integration are underappreciated. Integration involves more than simply making electrical connections. Interfacing microscale sensors with biological environments requires numerous considerations with respect to the creation of compatible packaging, the management of biological reagents, and the act of combining technologies with different dimensions and material properties. Recent advances in microfluidics, especially the proliferation of soft lithography manufacturing methods, have established the groundwork for creating systems that may solve many of the problems inherent to sensor-fluidic interaction. The adaptation of microelectronics manufacturing methods, such as Complementary Metal-Oxide-Semiconductor (CMOS) and Microelectromechanical Systems (MEMS) processes, allows the creation of a complete biological sensing system with integrated sensors and readout circuits. Combining these technologies is an obstacle to forming complete sensor systems. This dissertation presents new approaches for the design, fabrication, and integration of microscale sensors and microelectronics with microfluidics. The work addresses specific challenges, such as combining commercial manufacturing processes into biological systems and developing microscale sensors in these processes. This work is exemplified through a feedback-controlled microfluidic pH system to demonstrate the integration capabilities of microscale sensors for autonomous microenvironment control.
ContributorsWelch, David (Author) / Blain Christen, Jennifer (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Frakes, David (Committee member) / LaBelle, Jeffrey (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
152360-Thumbnail Image.png
Description
In this work, we present approximate adders and multipliers to reduce data-path complexity of specialized hardware for various image processing systems. These approximate circuits have a lower area, latency and power consumption compared to their accurate counterparts and produce fairly accurate results. We build upon the work on approximate adders

In this work, we present approximate adders and multipliers to reduce data-path complexity of specialized hardware for various image processing systems. These approximate circuits have a lower area, latency and power consumption compared to their accurate counterparts and produce fairly accurate results. We build upon the work on approximate adders and multipliers presented in [23] and [24]. First, we show how choice of algorithm and parallel adder design can be used to implement 2D Discrete Cosine Transform (DCT) algorithm with good performance but low area. Our implementation of the 2D DCT has comparable PSNR performance with respect to the algorithm presented in [23] with ~35-50% reduction in area. Next, we use the approximate 2x2 multiplier presented in [24] to implement parallel approximate multipliers. We demonstrate that if some of the 2x2 multipliers in the design of the parallel multiplier are accurate, the accuracy of the multiplier improves significantly, especially when two large numbers are multiplied. We choose Gaussian FIR Filter and Fast Fourier Transform (FFT) algorithms to illustrate the efficacy of our proposed approximate multiplier. We show that application of the proposed approximate multiplier improves the PSNR performance of 32x32 FFT implementation by 4.7 dB compared to the implementation using the approximate multiplier described in [24]. We also implement a state-of-the-art image enlargement algorithm, namely Segment Adaptive Gradient Angle (SAGA) [29], in hardware. The algorithm is mapped to pipelined hardware blocks and we synthesized the design using 90 nm technology. We show that a 64x64 image can be processed in 496.48 µs when clocked at 100 MHz. The average PSNR performance of our implementation using accurate parallel adders and multipliers is 31.33 dB and that using approximate parallel adders and multipliers is 30.86 dB, when evaluated against the original image. The PSNR performance of both designs is comparable to the performance of the double precision floating point MATLAB implementation of the algorithm.
ContributorsVasudevan, Madhu (Author) / Chakrabarti, Chaitali (Thesis advisor) / Frakes, David (Committee member) / Gupta, Sandeep (Committee member) / Arizona State University (Publisher)
Created2013
152367-Thumbnail Image.png
Description
Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing

Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing (DSP) applications. Most of the current efforts in DSP education focus on building tools to facilitate understanding of the mathematical principles. However, there is a disconnect between real-world data processing problems and the material presented in a DSP course. Sophisticated mobile interfaces and apps can potentially play a crucial role in providing a hands-on-experience with modern DSP applications to students. In this work, a new paradigm of DSP learning is explored by building an interactive easy-to-use health monitoring application for use in DSP courses. This is motivated by the increasing commercial interest in employing mobile phones for real-time health monitoring tasks. The idea is to exploit the computational abilities of the Android platform to build m-Health modules with sensor interfaces. In particular, appropriate sensing modalities have been identified, and a suite of software functionalities have been developed. Within the existing framework of the AJDSP app, a graphical programming environment, interfaces to on-board and external sensor hardware have also been developed to acquire and process physiological data. The set of sensor signals that can be monitored include electrocardiogram (ECG), photoplethysmogram (PPG), accelerometer signal, and galvanic skin response (GSR). The proposed m-Health modules can be used to estimate parameters such as heart rate, oxygen saturation, step count, and heart rate variability. A set of laboratory exercises have been designed to demonstrate the use of these modules in DSP courses. The app was evaluated through several workshops involving graduate and undergraduate students in signal processing majors at Arizona State University. The usefulness of the software modules in enhancing student understanding of signals, sensors and DSP systems were analyzed. Student opinions about the app and the proposed m-health modules evidenced the merits of integrating tools for mobile sensing and processing in a DSP curriculum, and familiarizing students with challenges in modern data-driven applications.
ContributorsRajan, Deepta (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013