This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 12
Filtering by

Clear all filters

189400-Thumbnail Image.png
Description
Identifying the hindrances to performing effective talent acquisition within the science, technology, engineering, and mathematics field is an important topic for technical hiring managers. Top candidates have multiple options during highly competitive market conditions requiring managers to look for unique solutions which diverge from competition. Prior to this study there

Identifying the hindrances to performing effective talent acquisition within the science, technology, engineering, and mathematics field is an important topic for technical hiring managers. Top candidates have multiple options during highly competitive market conditions requiring managers to look for unique solutions which diverge from competition. Prior to this study there has been very little research considering national laboratory research and development challenges from a technical hiring manager’s talent acquisition perspective. Utilizing a unique combination of national laboratory multi-organization survey, pilot study, Human Resource (HR) tracking data and trust based business strategy to enhance partnering this research finds hiring managers can leverage out of the box techniques to improve internal processes while developing industry support to target highly qualified individuals. This methodology could be utilized by technical hiring managers across federal national laboratory enterprise to effectively capture next generation staff and leadership talent who align with their organization professionally as well as social culture.
ContributorsBane, Scott C. (Author) / Sullivan, Kenneth (Thesis advisor) / Hurtado, Kristen (Committee member) / Standage, Richard (Committee member) / Arizona State University (Publisher)
Created2023
168676-Thumbnail Image.png
Description
The practice of Facility Condition Assessments (FCA’s) has received academic attention with over 20 condition assessment methodologies to date, focusing on condition gradients and scale ratings. However, little attention has been brought to the life cycle of an FCA, specifically how building owners and managers plan and conduct an FCA.

The practice of Facility Condition Assessments (FCA’s) has received academic attention with over 20 condition assessment methodologies to date, focusing on condition gradients and scale ratings. However, little attention has been brought to the life cycle of an FCA, specifically how building owners and managers plan and conduct an FCA. FCA methodologies in academic research are complex, sophisticated and require time for implementation that a typical facility manager does not have. This work showcases the need for simpler, more practical planning variables for a facility manager to begin the process of planning for an FCA in their management of a facilities portfolio. This research is a compilation of two national studies, the creation of an FCA project lifecycle analytical framework, and the creation of an organizational FCA maturity self-assessment model. Data was collected through semi-structured interviews from facility managers and facility condition assessment service providers to gain in-depth insight and understanding of the current practice of facility condition assessments in the facility management profession. This data was used to develop national surveys for both facility owners/managers and FCA service providers. An FCA project delivery model was developed through a Delphi study, representing an FCA project lifecycle. The development of a multi-phased FCA project delivery method provides a relative position and sequence of phases representing an FCA project lifecycle. An organizational FCA maturity self-assessment model was created as the first step for organizations to measure their current state of FCA awareness, FCA practice, state of reliability, asset knowledge posture and historical capital spending. The resulting research makes two distinct contributions to the literature. The first contribution is the sequencing of FCA project phases provides an analytic framework for understanding an FCA project lifecycle, providing owners, FCA practitioners and researchers to acknowledge that an FCA project represents a lifecycle model. The second contribution is an FCA planning tool for building owners and managers that allows an organization to bring to light the current state of FCA awareness and help communicate the value proposition FCA’s can afford to an organization. Recommendations for future research on the role of an FCA are provided.
ContributorsHillestad, Derek (Author) / Sullivan, Kenneth (Thesis advisor) / Ayer, Steven (Committee member) / Hurtado, Kristen (Committee member) / Arizona State University (Publisher)
Created2022
193429-Thumbnail Image.png
Description
This study investigates the energy saving potential of high albedo roof coatings which are designed to reflect a large proportion of solar radiation compared to traditional roofing materials. Using EnergyPlus simulations, the efficacy of silicone, acrylic, and aluminum roof coatings is assessed across two prototype commercial buildings—a standalone retail (2,294

This study investigates the energy saving potential of high albedo roof coatings which are designed to reflect a large proportion of solar radiation compared to traditional roofing materials. Using EnergyPlus simulations, the efficacy of silicone, acrylic, and aluminum roof coatings is assessed across two prototype commercial buildings—a standalone retail (2,294 m2 or 24,692 ft2) and a strip-mall (2,090 m2 or 22,500 ft2)—located in four cities: Phoenix, Houston, Los Angeles, and Miami. The performance of reflective coatings was compared with respect to a black roof having a solar reflectance of 5% and a thermal emittance of 90%. A sensitivity analysis was done to assess the impact of solar reflectance and thermal emittance on the ability of roof coatings to reduce surface temperatures, a key factor behind energy savings. This factor plays a crucial role in all three heat transfer mechanisms: conduction, convection, and radiation. The rooftop surface temperature exhibits considerable variation depending on the solar reflectance and thermal emittance attributes of the roof. A contour plot between these properties reveals that high values of both result in reduced cooling needs and a heating penalty which is insignificant when compared with cooling savings for cooling-dominant climates like Phoenix where the cooling demand significantly outweighs the heating demand, yielding significant energy savings. Furthermore, the study also investigates the effects of reflective coatings on buildings that have photovoltaic solar panels installed on them. This includes exploring their impact on building HVAC loads, as well as the performance improvement due to the reduced temperatures beneath them.
ContributorsSharma, Ajay Kumar (Author) / Phelan, Patrick (Thesis advisor) / Neithalath, Narayanan (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2024
157608-Thumbnail Image.png
Description
This research seeks to better understand the current state of US healthcare FM industry hiring practices from colleges and universities to identify potential employment barriers into healthcare FM and interventions to help overcome them. Two national surveys were distributed to healthcare facility managers and directors to collect quantifiable information

This research seeks to better understand the current state of US healthcare FM industry hiring practices from colleges and universities to identify potential employment barriers into healthcare FM and interventions to help overcome them. Two national surveys were distributed to healthcare facility managers and directors to collect quantifiable information on healthcare organizations, hiring practices from FM academic programs, individual demographics, and opinions of FM college graduates. Designated survey respondents were also contacted for phone interviews. Additionally, a Delphi method was used for this research to draw upon the collective knowledge and experience of 13 experts over three iterative rounds of input.

Results indicate that the healthcare FM industry is hiring very few college interns and new college graduates for entry-level management jobs. Strong homogeneousness demographics, backgrounds, and paths of entry among existing healthcare FM professionals has created an industry bias against candidates attempting to enter healthcare FM from non-traditional sources. The healthcare FM industry’s principal source for new talent comes from building trade succession within healthcare organizations. However, continuing to rely on building tradespersons as the main path of entry into the healthcare FM industry may prove problematic. Most existing healthcare facility managers and directors will be retiring within 10 years, yet it is taking more than 17 years of full-time work experience to prepare building tradespersons to assume these roles.

New college graduates from FM academic programs are a viable recruitment source for new talent into healthcare FM as younger professionals are commonly entering the healthcare FM through the path of higher education. Although few new college graduates enter the healthcare FM industry, they are experiencing similar promotion timeframes compared to other candidate with many years of full-time work experience. Unfamiliarity with FM academic programs, work experience requirements, limited entry-level jobs within small organizations, low pay, and a limited exposure to healthcare industry topics present challenges for new FM college graduates attempting to enter the healthcare FM industry. This study shows that gaps indeed exist in student learning outcomes for a comprehensive healthcare FM education; key technical topics specific to the healthcare industry are not being addressed by organizations accrediting construction and facility management academic programs. A framework is proposed for a comprehensive healthcare FM education including accreditation, regulatory and code compliance, infection control, systems in healthcare facilities, healthcare construction project management and methods, and clinical operations and medical equipment. Interestingly, academics in the field of FM generally disagree with industry professionals that these technical topics are important student learning outcomes. Consequently, FM academics prefer to teach students general FM principles with the expectation that specific technical knowledge will be gained in the workplace after graduation from college. Nevertheless, candidates attempting to enter healthcare FM without industry specific knowledge are disadvantaged due to industry perceptions and expectations. University-industry linkage must be improved to successfully attract students into the field of healthcare FM and establish colleges and universities as a sustainable recruitment source in helping address FM attrition.

This paper is valuable in establishing the current state of the US healthcare industry’s hiring practices from FM academic programs and identifying major barriers of entering the healthcare FM industry for new FM college graduates. Findings facilitate development of interventions by healthcare organizations and universities to further open FM academic programs as a sustainable source of new talent to help address healthcare FM attrition, including a healthcare FM education framework to elucidate college student learning outcomes for successful employment in healthcare FM. These student learning outcomes provide a framework for both the healthcare industry and academia in preparing future facility managers.
ContributorsCall, Steven Alan (Author) / Sullivan, Kenneth (Thesis advisor) / Hurtado, Kristen (Committee member) / Standage, Richard (Committee member) / Arizona State University (Publisher)
Created2019
157660-Thumbnail Image.png
Description
The delivery of construction projects, particularly with respect to design phase or preconstruction efforts, has changed significantly over the past twenty years. As alternative delivery methods such as Construction-Manager-at-Risk (CMAR) and Design-Build models have become more prominent, general contractors, owners, and designers have had the opportunity to take advantage of

The delivery of construction projects, particularly with respect to design phase or preconstruction efforts, has changed significantly over the past twenty years. As alternative delivery methods such as Construction-Manager-at-Risk (CMAR) and Design-Build models have become more prominent, general contractors, owners, and designers have had the opportunity to take advantage of the collaborative planning opportunities that exist during the preconstruction portion of the project. While much has been written regarding the benefits of more collaborative approaches and the utilization of various tools and practices during preconstruction to mitigate risk and maximize positive outcomes, what is lesser known is how to teach a coursework that exposes students to various tools and practices that are being utilized today. The objective of this research was to create a testable methodology that can be used to analyze a developed approach that answers the question of how to teach preconstruction tools and practices. A coursework was developed and taught as a graduate level class and data was collected from the actual teaching of that class. In addition, feedback was solicited from the construction industry concerning recommended content applicable to such a class. Data was then analyzed to ascertain student retention of the material and topical content of the course. Through these findings and literature review process the methodology and baseline coursework was shown as an effective means to teach preconstruction tools and practices.
ContributorsKutz, Barry Thomas (Author) / Sullivan, Kenneth T. (Thesis advisor) / Standage, Richard (Committee member) / Hurtado, Kristen (Committee member) / Arizona State University (Publisher)
Created2019
156954-Thumbnail Image.png
Description
Nanolaminate materials are layered composites with layer thickness ≤ 100 nm. They exhibit unique properties due to their small length scale, the presence of a high number of interfaces and the effect of imposed constraint. This thesis focuses on the mechanical behavior of Al/SiC nanolaminates. The high strength of ceramics

Nanolaminate materials are layered composites with layer thickness ≤ 100 nm. They exhibit unique properties due to their small length scale, the presence of a high number of interfaces and the effect of imposed constraint. This thesis focuses on the mechanical behavior of Al/SiC nanolaminates. The high strength of ceramics combined with the ductility of Al makes this combination desirable. Al/SiC nanolaminates were synthesized through magnetron sputtering and have an overall thickness of ~ 20 μm which limits the characterization techniques to microscale testing methods. A large amount of work has already been done towards evaluating their mechanical properties under indentation loading and micropillar compression. The effects of temperature, orientation and layer thickness have been well established. Al/SiC nanolaminates exhibited a flaw dependent deformation, anisotropy with respect to loading direction and strengthening due to imposed constraint. However, the mechanical behavior of nanolaminates under tension and fatigue loading has not yet been studied which is critical for obtaining a complete understanding of their deformation behavior. This thesis fills this gap and presents experiments which were conducted to gain an insight into the behavior of nanolaminates under tensile and cyclic loading. The effect of layer thickness, tension-compression asymmetry and effect of a wavy microstructure on mechanical response have been presented. Further, results on in situ micropillar compression using lab-based X-ray microscope through novel experimental design are also presented. This was the first time when a resolution of 50 nms was achieved during in situ micropillar compression in a lab-based setup. Pores present in the microstructure were characterized in 3D and sites of damage initiation were correlated with the channel of pores present in the microstructure.

The understanding of these deformation mechanisms paved way for the development of co-sputtered Al/SiC composites. For these composites, Al and SiC were sputtered together in a layer. The effect of change in the atomic fraction of SiC on the microstructure and mechanical properties were evaluated. Extensive microstructural characterization was performed at the nanoscale level and Al nanocrystalline aggregates were observed dispersed in an amorphous matrix. The modulus and hardness of co- sputtered composites were much higher than their traditional counterparts owing to denser atomic packing and the absence of synthesis induced defects such as pores and columnar boundaries.
ContributorsSingh, Somya (Author) / Chawla, Nikhilesh (Thesis advisor) / Neithalath, Narayanan (Committee member) / Jiao, Yang (Committee member) / Mara, Nathan (Committee member) / Arizona State University (Publisher)
Created2018
154997-Thumbnail Image.png
Description
As the demand of sustainable construction materials increases, use of fibers and textiles as partial or full reinforcement in concrete members present a tremendous opportunity. Proper characterization techniques and design guides for hybrid materials are therefore needed. This dissertation presents a comprehensive study on serviceability-based design of strain softening and

As the demand of sustainable construction materials increases, use of fibers and textiles as partial or full reinforcement in concrete members present a tremendous opportunity. Proper characterization techniques and design guides for hybrid materials are therefore needed. This dissertation presents a comprehensive study on serviceability-based design of strain softening and strain hardening materials. Multiple experimental procedures are developed to document the nature of single crack localization and multiple cracking mechanisms in various fiber and fabric reinforced cement-based composites. In addition, strain rate effects on the mechanical properties are examined using a high speed servo-hydraulic tension test equipment.

Significant hardening and degradation parameters such as stiffness, crack spacing, crack width, localized zone size are obtained from tensile tests using digital image correlation (DIC) technique. A tension stiffening model is used to simulate the tensile response that addresses the cracking and localization mechanisms. The model is also modified to simulate the sequential cracking in joint-free slabs on grade reinforced by steel fibers, where the lateral stiffness of slab and grade interface and stress-crack width response are the most important model parameters.

Parametric tensile and compressive material models are used to formulate generalized analytical solutions for flexural behaviors of hybrid reinforced concrete (HRC) that contains both rebars and fibers. Design recommendations on moment capacity, minimum reinforcement ratio etc. are obtained using analytical equations. The role of fiber in reducing the amount of conventional reinforcement is revealed. The approach is extended to T-sections and used to model Ultra High Performance Concrete (UHPC) beams and girders.

The analytical models are extended to structural members subjected to combined axial and bending actions. Analytical equations to address the P-M diagrams are derived. Closed-form equations that generate the interaction diagram of HRC section are presented which may be used in the design of multiple types of applications.

The theoretical models are verified by independent experimental results from literature. Reliability analysis using Monte Carlo simulation (MCS) is conducted for few design problems on ultimate state design. The proposed methodologies enable one to simulate the experiments to obtain material parameters and design structural members using generalized formulations.
ContributorsYao, Yiming (Author) / Mobasher, Barzin (Thesis advisor) / Underwood, Benjamin (Committee member) / Neithalath, Narayanan (Committee member) / Rajan, Subramaniam D. (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016
152620-Thumbnail Image.png
Description
The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in

The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.
ContributorsAswani, Karan (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2014
153545-Thumbnail Image.png
Description
For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey

For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (µXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale µXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging.

In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering `zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs.

The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the volumetric quantification of parameters which are indicative of both electromigration tolerance of solders and the dominant mechanisms for atomic migration in response to current stressing. This work is aimed to further the community's understanding of failure-causing electromigration processes in industrially relevant material systems for microelectronic interconnect applications and to advance the capability of available characterization techniques for their interrogation.
ContributorsMertens, James Charles Edwin (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2015
153100-Thumbnail Image.png
Description
Laminated composite materials are used in aerospace, civil and mechanical structural systems due to their superior material properties compared to the constituent materials as well as in comparison to traditional materials such as metals. Laminate structures are composed of multiple orthotropic material layers bonded together to form a single performing

Laminated composite materials are used in aerospace, civil and mechanical structural systems due to their superior material properties compared to the constituent materials as well as in comparison to traditional materials such as metals. Laminate structures are composed of multiple orthotropic material layers bonded together to form a single performing part. As such, the layup design of the material largely influences the structural performance. Optimization techniques such as the Genetic Algorithm (GA), Differential Evolution (DE), the Method of Feasible Directions (MFD), and others can be used to determine the optimal laminate composite material layup. In this thesis, sizing, shape and topology design optimization of laminated composites is carried out. Sizing optimization, such as the layer thickness, topology optimization, such as the layer orientation and material and the number of layers present, and shape optimization of the overall composite part contribute to the design optimization process of laminates. An optimization host program written in C++ has been developed to implement the optimization methodology of both population based and numerical gradient based methods. The performance of the composite structural system is evaluated through explicit finite element analysis of shell elements carried out using LS-DYNA. Results from numerical examples demonstrate that optimization design processes can significantly improve composite part performance through implementation of optimum material layup and part shape.
ContributorsMika, Krista (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2014