This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155035-Thumbnail Image.png
Description
A central task for historians and philosophers of science is to characterize and analyze the epistemic practices in a given science. The epistemic practice of a science includes its explanatory goals as well as the methods used to achieve these goals. This dissertation addresses the epistemic practices in gene expression

A central task for historians and philosophers of science is to characterize and analyze the epistemic practices in a given science. The epistemic practice of a science includes its explanatory goals as well as the methods used to achieve these goals. This dissertation addresses the epistemic practices in gene expression research spanning the mid-twentieth century to the twenty-first century. The critical evaluation of the standard historical narratives of the molecular life sciences clarifies certain philosophical problems with respect to reduction, emergence, and representation, and offers new ways with which to think about the development of scientific research and the nature of scientific change.

The first chapter revisits some of the key experiments that contributed to the development of the repression model of genetic regulation in the lac operon and concludes that the early research on gene expression and genetic regulation depict an iterative and integrative process, which was neither reductionist nor holist. In doing so, it challenges a common application of a conceptual framework in the history of biology and offers an alternative framework. The second chapter argues that the concept of emergence in the history and philosophy of biology is too ambiguous to account for the current research in post-genomic molecular biology and it is often erroneously used to argue against some reductionist theses. The third chapter investigates the use of network representations of gene expression in developmental evolution research and takes up some of the conceptual and methodological problems it has generated. The concluding comments present potential avenues for future research arising from each substantial chapter.

In sum, this dissertation argues that the epistemic practices of gene expression research are an iterative and integrative process, which produces theoretical representations of the complex interactions in gene expression as networks. Moreover, conceptualizing these interactions as networks constrains empirical research strategies by the limited number of ways in which gene expression can be controlled through general rules of network interactions. Making these strategies explicit helps to clarify how they can explain the dynamic and adaptive features of genomes.
ContributorsRacine, Valerie (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred D (Thesis advisor) / Creath, Richard (Committee member) / Newfeld, Stuart (Committee member) / Morange, Michel (Committee member) / Arizona State University (Publisher)
Created2016
Description
Scientific researchers have studied microorganisms since the emergence of the single lens microscope in the 17th century. Since then, researchers designed and published many thousands of images to record and share their observations, including hand-drawn diagrams, photomicrographs, and photographs. Images shaped how researchers conceived of microorganisms, their concepts of microorganisms

Scientific researchers have studied microorganisms since the emergence of the single lens microscope in the 17th century. Since then, researchers designed and published many thousands of images to record and share their observations, including hand-drawn diagrams, photomicrographs, and photographs. Images shaped how researchers conceived of microorganisms, their concepts of microorganisms shaped their images, and their images and concepts were shaped by the contexts in which they were working. Over time, the interplay of images and concepts in various research contexts participated in the development of new concepts related to microorganisms, like the “biofilm” concept, or the idea that bacteria exist in nature as complex aggregates attached to surfaces via extracellular polymeric matrices. Many histories of microbiology locate the origin of the biofilm concept in the 1970s, but that date obscures the rich history of research about attached microbial aggregates that occurred throughout the history of microbiology. I discovered how the interplay of images and concepts related to bacteria participated in the development of the biofilm concept by documenting when and why researchers used different visual features to represent changing concepts related to microorganisms. I specifically examined how and why scientists represented evolving concepts related to bacteria during the 17th century (Chapter 1), from the late 17th century to the early 20th century (Chapter 2), and during the first seventy-four years of the 20th century (Chapter 3). I discovered the biofilm concept developed in at least three unique research contexts during the 20th century, and how images reflected and shaped the concept’s development in each case. The narrative and collection of images generated from this work serve as a visual history of the development of scientists’ ideas about the nature of bacteria over 300 years.
ContributorsGuerrero, Anna Clemencia (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Committee member) / Sterner, Beckett (Committee member) / Matlin, Karl (Committee member) / Arizona State University (Publisher)
Created2023