This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 188
Filtering by

Clear all filters

152035-Thumbnail Image.png
Description
Coccidioidomycosis, also known as Valley Fever, is a disease caused by the dimorphic soil-dwelling fungus, Coccidioides sp. Coccidioidomycosis is difficult to diagnose because symptoms are similar to community-acquired pneumonia. Current diagnostic tests rely on antibody responses, but immune responses can be delayed and aberrant, resulting in false negative diagnoses. Unlike

Coccidioidomycosis, also known as Valley Fever, is a disease caused by the dimorphic soil-dwelling fungus, Coccidioides sp. Coccidioidomycosis is difficult to diagnose because symptoms are similar to community-acquired pneumonia. Current diagnostic tests rely on antibody responses, but immune responses can be delayed and aberrant, resulting in false negative diagnoses. Unlike serology, detection of coccidioidal proteins or other fungal components in blood could distinguish valley fever from other pulmonary infections and provide a definitive diagnosis. Using mass spectrometry (LC-MS/MS) we examined the plasma peptidome from patients with serologically confirmed coccidioidomycosis. Mass spectra were searched using the protein database from the Coccidioides species, generated and annotated by the Broad Institute. 15 of 20 patients with serologically confirmed coccidioidomycosis demonstrated the presence of a peptide in plasma, "PGLDSKSLACTFSQV" (PGLD). The peptide is derived from an open reading frame from a "conserved hypothetical protein" annotated with 2 exons, and to date, found only in the C. posadasii strain Silviera RMSCC 3488 genomic sequence. In this thesis work, cDNA sequence analysis from polyadenylated RNA confirms the peptide sequence and genomic location of the peptide, but does not indicate that the intron in the gene prediction of C. posadasii strain Silviera RMSCC 3488 is present. A monoclonal antibody generated against the peptide bound to a 16kDa protein in T27K coccidioidal lysate. Detecting components of the fungus plasma could be a useful diagnostic tool, especially when serology does not provide a definitive diagnosis.
ContributorsDuffy, Stacy Leigh (Author) / Lake, Douglas (Thesis advisor) / Magee, Dewey Mitch (Committee member) / Antwi, Kwasi (Committee member) / Arizona State University (Publisher)
Created2013
151709-Thumbnail Image.png
Description
Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of

Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of five AWS and five paired control sites (treatments) in the surrounding Sonoran desert from October 2011 to May 2012. I measured plant species richness, density, and percent cover in the spring of 2012. A Multi-response Permutation Procedure was used to identify differences in small mammal community abundance, biomass, and species richness by season and treatment. I used Principle Component Analysis to reduce 11 habitat characteristics to five habitat factors. I related rodent occurrence to habitat characteristics using multiple and logistic regression. A total of 370 individual mammals representing three genera and eight species of rodents were captured across 4800 trap nights. Desert pocket mouse (Chaetodipus penicillatus) was the most common species in both seasons and treatments. Whereas rodent community abundance, biomass, and richness were similar between seasons, community variables of AWS were greater than CS. Rodent diversity was similar between treatments. Desert pocket mouse abundance and biomass were twice as high at AWS when compared to controls. Biomass of white-throated woodrat (Neotoma albigula) was five times greater at AWS. Habitat characteristics were similar between treatments. Neither presence of water nor distance to water explained substantial habitat variation. Occurrence of rodent species was associated with habitat characteristics. Desert rodent communities are adapted for arid environments (i.e. Heteromyids) and are not dependent on "free water". Higher abundances of desert pocket mouse at AWS were most likely related to increased disturbance and debris and not the presence of water. The results of this study and previous studies suggest that more investigation is needed and that short term studies may not be able to detect interactions (if any) between AWS and desert small mammal communities.
ContributorsSwitalski, Aaron (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2013
151901-Thumbnail Image.png
Description
ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups

ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups with patterns of very low chroma have been largely overlooked. 2. We propose that bright displays with low chroma arose in toxic prey species because they were more effective at deterring predation than were their chromatic counterparts, especially when viewed in relatively low light environments such as forest understories. 3. We analyzed the reflectance and radiance of color patches on the wings of 90 tropical butterfly species that belong to groups with documented toxicity that vary in their habitat preferences to test this prediction: Warning signal chroma and perceived chromaticity are expected to be higher and brightness lower in species that fly in open environments when compared to those that fly in forested environments. 4. Analyses of the reflectance and radiance of warning color patches and predator visual modeling support this prediction. Moreover, phylogenetic tests, which correct for statistical non-independence due to phylogenetic relatedness of test species, also support the hypothesis of an evolutionary correlation between perceived chromaticity of aposematic signals and the flight habits of the butterflies that exhibit these signals.
ContributorsDouglas, Jonathan Marion (Author) / Rutowski, Ronald L (Thesis advisor) / Gadau, Juergen (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2013
151903-Thumbnail Image.png
Description
ABSTRACT In this work, I provide two novel pieces of evidence in favor of the view that there is pragmatic encroachment on knowledge. First, I present an empirical case via the results of a series of recent experiments to show that folk-knowledge attributions may be sensitive to time constraints even

ABSTRACT In this work, I provide two novel pieces of evidence in favor of the view that there is pragmatic encroachment on knowledge. First, I present an empirical case via the results of a series of recent experiments to show that folk-knowledge attributions may be sensitive to time constraints even when the latter are construed in a non-truth relevant manner. Along the way, I consider some comments made by Jonathan Schaffer (2006) as it pertains to interpreting time constraints-sensitivity in a manner that supports contextualism, before offering reasons to resist such a treatment. I proceed by applying interest relative invariantism to adjudicate a conflict in the epistemology of testimony namely, the positive reasons requirement a la, reductionism vs. non-reductionism. In particular, I highlight how whether an epistemic subject H needs positive non-testimonial reasons to be justified in accepting S's testimony that p, depends on what is at stake for H in believing that p and how much time H has in deliberating about p.
ContributorsShin, Joseph Ellis (Author) / Pinillos, N. Angel (Thesis advisor) / Reynolds, Steven L (Committee member) / White, Michael J. (Committee member) / Arizona State University (Publisher)
Created2013
151744-Thumbnail Image.png
Description
This thesis explores the conceptual span and plausibility of emergence and its applicability to the problem of mental causation. The early parts of the project explicate a distinction between weak and strong emergence as described by Jaegwon Kim. They also consider Kim's objections regarding the conceptual incoherence of strong emergence

This thesis explores the conceptual span and plausibility of emergence and its applicability to the problem of mental causation. The early parts of the project explicate a distinction between weak and strong emergence as described by Jaegwon Kim. They also consider Kim's objections regarding the conceptual incoherence of strong emergence and the otiose nature of weak emergence. The paper then explores Mark Bedau's in-between conception of emergence and ultimately finds that middle conception to be both coherent and useful. With these three emergence distinctions in hand, the thesis goes on to explore Evan Thompson's recent work - Mind in Life (2010). In that work, Thompson advances a strong emergence approach to mind, whereby he concludes the incipient stages of cognition are found at the most basic levels of life, namely - biologic cells. Along the way, Thompson embraces holism and a nonfundamental
onhierarchical physics in order to counter Jaegwon Kim's objections to the notion of downward causation needed for strong emergence. The thesis presents arguments against Thompson's holism and nonfundamental physics, while supporting his assertion regarding the incipient stages of cognition. It then combines an important distinction between mental causation and the experience of mental causation with Thompson's notion of incipient cognition to arrive at a dual realms approach to understanding mental causation.
ContributorsFournier, Thomas (Author) / Kobes, Bernard W (Thesis advisor) / Reynolds, Steven L (Committee member) / Armendt, Brad (Committee member) / Arizona State University (Publisher)
Created2013
151751-Thumbnail Image.png
Description
Saying, "if Mary had watered Sam's plant, it wouldn't have died," is an ordinary way to identify Mary not watering Sam's plant as the cause of its death. But there are problems with this statement. If we identify Mary's omitted action as the cause, we seemingly admit an inordinate number

Saying, "if Mary had watered Sam's plant, it wouldn't have died," is an ordinary way to identify Mary not watering Sam's plant as the cause of its death. But there are problems with this statement. If we identify Mary's omitted action as the cause, we seemingly admit an inordinate number of omissions as causes. For any counterfactual statement containing the omitted action is true (e.g. if Hillary Clinton had watered Sam's plant, it wouldn't have died). The statement, moreover, is mysterious because it is not clear why one protasis is more salient than any alternatives such as "if Sam hadn't gone to Bismarck." In the burgeoning field of experimental metaphysics, some theorists have tried to account for these intuitions about omissive causes. By synthesizing this data and providing a few experiments, I will suggest that judgments - and maybe metaphysics - about omissive causes necessarily have a normative feature. This understanding of omissive causes may be able to adequately resolve the problems above.
ContributorsHenne, Paul (Author) / Kobes, Bernard W (Thesis advisor) / Pinillos, Nestor A (Thesis advisor) / Reynolds, Steven (Committee member) / Arizona State University (Publisher)
Created2013
151939-Thumbnail Image.png
Description
Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies).

Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies). On the diagnostic side, serum containing specific infection-related antibodies create unique and distinct "pathogen-immunosignatures" on the random peptide microarray distinct from the healthy control serum, and this different mode of binding can be used as a more precise measurement than traditional ELISA tests. My thesis project is separated into these two parts: the first part falls into the treatment side and the second one focuses on the diagnostic side. My first chapter shows that a substitution amino acid peptide library helps to improve the activity of a recently reported synthetic antimicrobial peptide selected by the random peptide microarray. By substituting one or two amino acids of the original lead peptide, the new substitutes show changed hemolytic effects against mouse red blood cells and changed potency against two pathogens: Staphylococcus aureus and Pseudomonas aeruginosa. Two new substitutes are then combined together to form the synbody, which shows a significantly antimicrobial potency against Staphylococcus aureus (<0.5uM). In the second chapter, I explore the possibility of using the 10K Ver.2 random peptide microarray to monitor the humoral immune response of dengue. Over 2.5 billion people (40% of the world's population) live in dengue transmitting areas. However, currently there is no efficient dengue treatment or vaccine. Here, with limited dengue patient serum samples, we show that the immunosignature has the potential to not only distinguish the dengue infection from non-infected people, but also the primary dengue infection from the secondary dengue infections, dengue infection from West Nile Virus (WNV) infection, and even between different dengue serotypes. By further bioinformatic analysis, we demonstrate that the significant peptides selected to distinguish dengue infected and normal samples may indicate the epitopes responsible for the immune response.
ContributorsWang, Xiao (Author) / Johnston, Stephen Albert (Thesis advisor) / Blattman, Joseph (Committee member) / Arntzen, Charles (Committee member) / Arizona State University (Publisher)
Created2013
151334-Thumbnail Image.png
Description
Biological diversity is threatened by increasing anthropogenic modification of natural environments and increasing demands on natural resources. Sonoran desert tortoises (Gopherus morafkai) currently have Candidate status under the Endangered Species Act (ESA) based on health and habitat threats. To ensure this animal persists in the midst of multiple threats requires

Biological diversity is threatened by increasing anthropogenic modification of natural environments and increasing demands on natural resources. Sonoran desert tortoises (Gopherus morafkai) currently have Candidate status under the Endangered Species Act (ESA) based on health and habitat threats. To ensure this animal persists in the midst of multiple threats requires an understanding of the life history and ecology of each population. I looked at one physiological and one behavioral aspect of a population of tortoises at the Sugarloaf Mountain (SL) study site in central Arizona, USA. I used 21 years of capture-recapture records to estimate growth parameters of the entire population. I investigated habitat selection of juvenile tortoises by selecting 117 locations of 11 tortoises that had been tracked by radio-telemetry one to three times weekly for two years, selecting locations from both summer active season and during winter hibernation. I compared 22 microhabitat variables of tortoise locations to random SL locations to determine habitat use and availability. Male tortoises at SL reach a greater asymptotic length than females, and males and females appear to grow at the same rate. Juvenile tortoises at the SL site use steep rocky hillsides with high proportions of sand and annual vegetation, few succulents, and enclosed shelters in summer. They use enclosed shelters on steep slopes for winter hibernation. An understanding of these features can allow managers to quantify Sonoran desert tortoise habitat needs and life history characteristics and to understand the impact of land use policies.
ContributorsBridges, Andrew (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Ulrich, Jon (Committee member) / Arizona State University (Publisher)
Created2012
152348-Thumbnail Image.png
Description
Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e.,

Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e., oral pathogen Porphyromonas gingivalis and enterobacterial Escherichia coli. P. gingivalis is a major causative agent of periodontal disease as well as systemic illnesses, like cardiovascular disease. A microarray study found that the putative PorY-PorX TCR system controls the secretion and maturation of virulence factors, as well as loci involved in the PorSS secretion system, which secretes proteinases, i.e., gingipains, responsible for periodontal disease. Proteomic analysis (SILAC) was used to improve the microarray data, reverse-transcription PCR to verify the proteomic data, and primer extension assay to determine the promoter regions of specific PorX regulated loci. I was able to characterize multiple genetic loci regulated by this TCR system, many of which play an essential role in hemagglutination and host-cell adhesion, and likely contribute to virulence in this bacterium. Enteric Gram-negative bacteria must withstand many host defenses such as digestive enzymes, low pH, and antimicrobial peptides (AMPs). The CpxR-CpxA TCR system of E. coli has been extensively characterized and shown to be required for protection against AMPs. Most recently, this TCR system has been shown to up-regulate the rfe-rff operon which encodes genes involved in the production of enterobacterial common antigen (ECA), and confers protection against a variety of AMPs. In this study, I utilized primer extension and DNase I footprinting to determine how CpxR regulates the ECA operon. My findings suggest that CpxR modulates transcription by directly binding to the rfe promoter. Multiple genetic and biochemical approaches were used to demonstrate that specific TCR systems contribute to regulation of virulence factors and resistance to host defenses in P. gingivalis and E. coli, respectively. Understanding these genetic circuits provides insight into strategies for pathogenesis and resistance to host defenses in Gram negative bacterial pathogens. Finally, these data provide compelling potential molecular targets for therapeutics to treat P. gingivalis and E. coli infections.
ContributorsLeonetti, Cori (Author) / Shi, Yixin (Thesis advisor) / Stout, Valerie (Committee member) / Nickerson, Cheryl (Committee member) / Sandrin, Todd (Committee member) / Arizona State University (Publisher)
Created2013
151843-Thumbnail Image.png
Description
Panpsychist double aspect theory, the most promising version of panpsychism, holds that the mental and the physical are mutually irreducible properties, or features, of ultimate matter, therefore they both are ontologically fundamental and ubiquitous. This version of panpsychism involves the following two notions: anti-reductivism and anti- emergentism. The former states

Panpsychist double aspect theory, the most promising version of panpsychism, holds that the mental and the physical are mutually irreducible properties, or features, of ultimate matter, therefore they both are ontologically fundamental and ubiquitous. This version of panpsychism involves the following two notions: anti-reductivism and anti- emergentism. The former states that mental phenomena are not recordable in terms of physics. The latter implies that mental phenomena do not causally arise only from a certain macroscale physical condition, and the mental and the physical do not constitute an ontological hierarchy. From these notions, it follows that any macroscale mental phenomenon is the result of a combination of ultimate mental properties. Yet this idea creates the combination problem: how higher level mentality, e.g., human or animal consciousness, arises from lower level mentality, the ultimate mental "particles." Panpsychist double aspect theory purports to find the proper location of mind in the world without being vulnerable to typical mind-body problems. Nevertheless, since this version of panpsychism explains the ontological structure of higher level mentality as analogous to the atomic structure of a molecular physical entity, the combination problem arises. In Chapter 1, I explain the general conception of panpsychism. Chapter 2 shows the plausibility of panpsychist double aspect theory and how the combination problem arises from this version. I discuss the history and implications of the combination problem in Chapter 3. In Chapter 4, I introduce some alternative versions of panpsychism that do not raise the combination problem, and point out their implausibility. The intelligibility of mental combination is explained in Chapter 5. The moral of these chapters is that our epistemic intuition that mind is not composed of "smaller" minds fails to undermine the possibility that mind is structurally complex. In Chapter 6, I argue that C. Koch and G. Tononi's integrated information theory (IIT) is a form of panpsychism, and that the IIT can serve as a model for solving the combination problem. However, I am not committed to the IIT, and I point out theoretical weaknesses of the IIT besides the combination problem.
ContributorsNoh, Hyungrae (Author) / Kobes, Bernard W (Thesis advisor) / Reynolds, Steven (Committee member) / Pinillos, Angel (Committee member) / Arizona State University (Publisher)
Created2013