This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 175
Filtering by

Clear all filters

152019-Thumbnail Image.png
Description
In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the

In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the nonlinear and anharmonic regime in the normal phase of strange quark matter. We point out several qualitative effects due to the anharmonicity, although quantitatively they appear to be relatively small. In the corresponding study, we take into account the interplay between the non- leptonic and semileptonic weak processes. The results can be important in order to relate accessible observables of compact stars to their internal composition. We also use quantum field theoretical methods to study the transport properties in monolayer graphene in a strong magnetic field. The corresponding quasi-relativistic system re- veals an anomalous quantum Hall effect, whose features are directly connected with the spontaneous flavor symmetry breaking. We study the microscopic origin of Fara- day rotation and magneto-optical transmission in graphene and show that their main features are in agreement with the experimental data.
ContributorsWang, Xinyang, Ph.D (Author) / Shovkovy, Igor (Thesis advisor) / Belitsky, Andrei (Committee member) / Easson, Damien (Committee member) / Peng, Xihong (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2013
151710-Thumbnail Image.png
Description
In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales. Previous calculations by Desch et al. (2009) predicted that initially homogenous KBOs comparable in size to Charon (R ~ 600

In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales. Previous calculations by Desch et al. (2009) predicted that initially homogenous KBOs comparable in size to Charon (R ~ 600 km) have surfaces too cold to permit the separation of rock and ice, and should always retain thick (~ 85 km) crusts, despite the partial differentiation of rock and ice inside the body. The retention of a thermally insulating, undifferentiated crust is favorable to the maintenance of subsurface liquid and potentially cryovolcanism on the KBO surface. A potential objection to these models is that the dense crust of rock and ice overlying an ice mantle represents a gravitationally unstable configuration that should overturn by Rayleigh-Taylor (RT) instabilities. I have calculated the growth rate of RT instabilities at the ice-crust interface, including the effect of rock on the viscosity. I have identified a critical ice viscosity for the instability to grow significantly over the age of the solar system. I have calculated the viscosity as a function of temperature for conditions relevant to marginal instability. I find that RT instabilities on a Charon-sized KBO require temperatures T > 143 K. Including this effect in thermal evolution models of KBOs, I find that the undifferentiated crust on KBOs is thinner than previously calculated, only ~ 50 km. While thinner, this crustal thickness is still significant, representing ~ 25% of the KBO mass, and helps to maintain subsurface liquid throughout most of the KBO's history.
ContributorsRubin, Mark (Author) / Desch, Steven J (Thesis advisor) / Sharp, Thomas (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Arizona State University (Publisher)
Created2013
152229-Thumbnail Image.png
Description
A significant portion of stars occur as binary systems, in which two stellar components orbit a common center of mass. As the number of known exoplanet systems continues to grow, some binary systems are now known to harbor planets around one or both stellar components. As a first look into

A significant portion of stars occur as binary systems, in which two stellar components orbit a common center of mass. As the number of known exoplanet systems continues to grow, some binary systems are now known to harbor planets around one or both stellar components. As a first look into composition of these planetary systems, I investigate the chemical compositions of 4 binary star systems, each of which is known to contain at least one planet. Stars are known to vary significantly in their composition, and their overall metallicity (represented by iron abundance, [Fe/H]) has been shown to correlate with the likelihood of hosting a planetary system. Furthermore, the detailed chemical composition of a system can give insight into the possible properties of the system's known exoplanets. Using high-resolution spectra, I quantify the abundances of up to 28 elements in each stellar component of the binary systems 16 Cyg, 83 Leo, HD 109749, and HD 195019. A direct comparison is made between each star and its binary companion to give a differential composition for each system. For each star, a comparison of elemental abundance vs. condensation temperature is made, which may be a good diagnostic of refractory-rich terrestrial planets in a system. The elemental ratios C/O and Mg/Si, crucial in determining the atmospheric composition and mineralogy of planets, are calculated and discussed for each star. Finally, the compositions and diagnostics of each binary system are discussed in terms of the known planetary and stellar parameters for each system.
ContributorsCarande, Bryce (Author) / Young, Patrick (Thesis advisor) / Patience, Jennifer L (Thesis advisor) / Anbar, Ariel D (Committee member) / Arizona State University (Publisher)
Created2013
152107-Thumbnail Image.png
Description
This dissertation integrates humanities with social science methodologies within a critical framework, seeking to explore the relationship between the neoliberal restructuring and the intersection of gender, class and heteronormativity in contemporary China. In this project, neoliberalism is conceptualized as an art of governance centering on the intersection of race, gender,

This dissertation integrates humanities with social science methodologies within a critical framework, seeking to explore the relationship between the neoliberal restructuring and the intersection of gender, class and heteronormativity in contemporary China. In this project, neoliberalism is conceptualized as an art of governance centering on the intersection of race, gender, class and sexuality to create market subjects and sustain market competition. Focusing on China's recent socio-economic and cultural upheavals, this dissertation tries to address these questions: 1. How have class inequalities, binaristic gender and heteronormative discourses been employed intersectionally by the Chinese state to facilitate China's social transformation? 2. How has this process been justified and consolidated through the intersection of gender, class, sexuality and race? 3. How do the marginalized groups respond to these material and cultural practices? Building on the discursive analysis of China's televised 60th anniversary ceremony and If You Are the One, a popular Chinese reality show, as well as the data from the interview, focus group and participant observation of more than 100 informants, it is found that the intersection of gender, class and heteronormativity is central to China's neoliberal transition. A group of flexible and cheap laborers have been disarticulated and rearticulated from the population as the voluntary servitude to China's marketization and re-integration with the global economy. New controlling images, such as the bourgeois nucleus family, are created to legitimize this process. However, these disparate material and discursive practices have entailed contradictions and conflicts within the intersectional biopolitical system, and created contingent spaces of ungovernability for the marginalized groups. Building on these discursive analyses and empirical data, I reconceptualize intersectionality as a multi-dimensional-and-directional network to regulate and manage power for social organization and regulation, which grounds the biopolitical basics for the neoliberal economy. Thus I argue that we need to engage with the dynamics between the intersectional biopolitical structure and people's emerging experiences to construct a grounded utopia alternative to the neoliberal dominance for substantive social changes.
ContributorsZhang, Charlie Yi (Author) / Quan, H. L. T. (Thesis advisor) / Fonow, Mary Margaret (Thesis advisor) / Martinez, Jacqueline M. (Committee member) / Lee, Charles T. (Committee member) / Arizona State University (Publisher)
Created2013
151890-Thumbnail Image.png
Description
Gender and sex are often conflated. Our laws, policies, and even science establish sex and gender as intrinsically linked and dimorphic in nature. This dissertation examines the relationship between sex and gender and the repercussions of this linked dimorphism in the realms of law, politics, and science. Chapter One identifies

Gender and sex are often conflated. Our laws, policies, and even science establish sex and gender as intrinsically linked and dimorphic in nature. This dissertation examines the relationship between sex and gender and the repercussions of this linked dimorphism in the realms of law, politics, and science. Chapter One identifies the legal climate for changing one's sexual identity post-surgical reassignment. It pays particular attention to the ability of postsurgical transsexuals to marry in their acquired sex. Chapter Two considers the process for identifying the sex of athletes for the purposes of participation in sex-segregated athletic events, specifically the role of testing and standards for categorization. Chapter Three explores the process of identifying and assigning the sex of intersex children. Chapter Four examines the process of prenatal sex selection and its ethical implications. Chapter Four also offers an anticipatory governance framework to address these implications.
ContributorsParsi, John (Author) / Crittenden, Jack (Thesis advisor) / Guston, David H. (Committee member) / Marchant, Gary (Committee member) / Arizona State University (Publisher)
Created2013
152054-Thumbnail Image.png
Description
Solar system orbital dynamics can offer unique challenges. Impacts of interplanetary dust particles can significantly alter the surfaces of icy satellites and minor planets. Impact heating from these particles can anneal away radiation damage to the crystalline structure of surface water ice. This effect is enhanced by gravitational focusing for

Solar system orbital dynamics can offer unique challenges. Impacts of interplanetary dust particles can significantly alter the surfaces of icy satellites and minor planets. Impact heating from these particles can anneal away radiation damage to the crystalline structure of surface water ice. This effect is enhanced by gravitational focusing for giant planet satellites. In addition, impacts of interplanetary dust particles on the small satellites of the Pluto system can eject into the system significant amounts of secondary intra-satellite dust. This dust is primarily swept up by Pluto and Charon, and could explain the observed albedo features on Pluto's surface. In addition to Pluto, a large fraction of trans-neptunian objects (TNOs) are binary or multiple systems. The mutual orbits of these TNO binaries can range from very wide (periods of several years) to near-contact systems (less than a day period). No single formation mechanism can explain this distribution. However, if the systems generally formed wide, a combination of solar and body tides (commonly called Kozai Cycles-Tidal Friction, KCTF) can cause most systems to tighten sufficiently to explain the observed distributions. This KCTF process can also be used to describe the orbital evolution of a terrestrial-class exoplanet after being captured as a satellite of a habitable-zone giant exoplanet. The resulting exomoon would be both potentially habitable and potenially detectable in the full Kepler data set.
ContributorsPorter, Simon Bernard (Author) / Desch, Steven (Thesis advisor) / Zolotov, Mikhail (Committee member) / Timmes, Francis (Committee member) / Scannapieco, Evan (Committee member) / Robinson, Mark (Committee member) / Arizona State University (Publisher)
Created2013
151756-Thumbnail Image.png
Description
Galaxies represent a fundamental catalyst in the ``lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to

Galaxies represent a fundamental catalyst in the ``lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to study the formation and evolution of galaxies, at an unrivaled spatial resolution, over more than 90% of cosmic time. Here, I present results from two complementary studies of galaxy evolution in the local and intermediate redshift Universe which used new and archival HST images. First, I use archival broad-band HST WFPC2 optical images of local (d<63 Mpc) Seyfert-type galaxies to test the observed correlation between visually-classified host galaxy dust morphology and AGN class. Using quantitative parameters for classifying galaxy morphology, I do not measure a strong correlation between the galaxy morphology and AGN class. This result could imply that the Unified Model of AGN provides a sufficient model for the observed diversity of AGN, but this result could also indicate the quantitative techniques are insufficient for characterizing the dust morphology of local galaxies. To address the latter, I develop a new automated method using an inverse unsharp masking technique coupled to Source Extractor to detect and measure dust morphology. I measure no strong trends with dust-morphology and AGN class using this method, and conclude that the Unified Model remains sufficient to explain the diversity of AGN. Second, I use new UV-optical-near IR broad-band images obtained with the HST WFC3 in the Early Release Science (ERS) program to study the evolution of massive, early-type galaxies. These galaxies were once considered to be ``red and dead'', as a class uniformly devoid of recent star formation, but observations of these galaxies in the local Universe at UV wavelengths have revealed a significant fraction (30%) of ETGs to have recently formed a small fraction (5-10%) of their stellar mass in young stars. I extend the study of recent star formation in ETGs to intermediate-redshift 0.35<1.5 with the ERS data. Comparing the mass fraction and age of young stellar populations identified in these ETGs from two-component SED analysis with the morphology of the ETG and the frequency of companions, I find that at this redshift many ETGs are likely to have experienced a minor burst of recent star formation. The mechanisms driving this recent star formation are varied, and evidence for both minor merger driven recent star formation as well as the evolution of transitioning ETGs is identified.
ContributorsRutkowski, Michael (Author) / Windhorst, Rogier A. (Thesis advisor) / Bowman, Judd (Committee member) / Butler, Nathaniel (Committee member) / Desch, Steven (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151320-Thumbnail Image.png
Description
In the latter half of the nineteenth century, colleges and universities transformed their thinking of the body as they institutionalized physical education, recreational activities, and especially physical exercise. In this study, I examine the historical discourse on physical exercise and training during this period. I employ the theoretical and methodological

In the latter half of the nineteenth century, colleges and universities transformed their thinking of the body as they institutionalized physical education, recreational activities, and especially physical exercise. In this study, I examine the historical discourse on physical exercise and training during this period. I employ the theoretical and methodological practices of Michel Foucault's archeological and genealogical work to write a "history of the present." I challenge the essential narrative of physical fitness on college and university campuses. I also discuss nineteenth century notions of ethics and masculinity as a way of understanding twenty-first century ethics and masculinity. Ultimately, I use the historical discourse to argue that institutionalization of recreation and fitness centers and activities have less to do with health and well-being and more to do with disciplining bodies and controlling individuals.
ContributorsWells, Timothy (Author) / Carlson, David L. (Thesis advisor) / Sandlin, Jennifer (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2012
151356-Thumbnail Image.png
Description
A thorough exploration of star formation necessitates observation across the electromagnetic spectrum. In particular, observations in the submillimeter and ultra-violet allow one to observe very early stage star formation and to trace the evolution from molecular cloud collapse to stellar ignition. Submillimeter observations are essential for piercing the heart of

A thorough exploration of star formation necessitates observation across the electromagnetic spectrum. In particular, observations in the submillimeter and ultra-violet allow one to observe very early stage star formation and to trace the evolution from molecular cloud collapse to stellar ignition. Submillimeter observations are essential for piercing the heart of heavily obscured stellar nurseries to observe star formation in its infancy. Ultra-violet observations allow one to observe stars just after they emerge from their surrounding environment, allowing higher energy radiation to escape. To make detailed observations of early stage star formation in both spectral regimes requires state-of-the-art detector technology and instrumentation. In this dissertation, I discuss the calibration and feasibility of detectors developed by Lawrence Berkeley National Laboratory and specially processed at the Jet Propulsion Laboratory to increase their quantum efficiency at far-ultraviolet wavelengths. A cursory treatment of the delta-doping process is presented, followed by a thorough discussion of calibration procedures developed at JPL and in the Laboratory for Astronomical and Space Instrumentation at ASU. Subsequent discussion turns to a novel design for a Modular Imager Cell forming one possible basis for construction of future large focal plane arrays. I then discuss the design, fabrication, and calibration of a sounding rocket imaging system developed using the MIC and these specially processed detectors. Finally, I discuss one scientific application of sub-mm observations. I used data from the Heinrich Hertz Sub-millimeter Telescope and the Sub-Millimeter Array (SMA) to observe sub-millimeter transitions and continuum emission towards AFGL 2591. I tested the use of vibrationally excited HCN emission to probe the protostellar accretion disk structure. I measured vibrationally excited HCN line ratios in order to elucidate the appropriate excitation mechanism. I find collisional excitation to be dominant, showing the emission originates in extremely dense (n&sim10;11 cm-3), warm (T&sim1000; K) gas. Furthermore, from the line profile of the v=(0, 22d, 0) transition, I find evidence for a possible accretion disk.
ContributorsVeach, Todd Justin (Author) / Scowen, Paul A (Thesis advisor) / Groppi, Christopher E (Thesis advisor) / Beasley, Matthew N (Committee member) / Rhoads, James E (Committee member) / Windhorst, Rogier A (Committee member) / Arizona State University (Publisher)
Created2012
151377-Thumbnail Image.png
Description
Arnold Schoenberg's 1908-09 song cycle, Das Buch der hängenden Gärten [The Book of the Hanging Gardens], opus 15, represents one of his most decisive early steps into the realm of musical modernism. In the midst of personal and artistic crises, Schoenberg set texts by Stefan George in a style he

Arnold Schoenberg's 1908-09 song cycle, Das Buch der hängenden Gärten [The Book of the Hanging Gardens], opus 15, represents one of his most decisive early steps into the realm of musical modernism. In the midst of personal and artistic crises, Schoenberg set texts by Stefan George in a style he called "pantonality," and described his composition as radically new. Though stylistically progressive, however, Schoenberg's musical achievement had certain ideologically conservative roots: the composer numbered among turn-of-the-century Viennese artists and thinkers whose opposition to the conventional and the popular--in favor of artistic autonomy and creativity--concealed a reactionary misogyny. A critical reading of Hanging Gardens through the lens of gender reveals that Schoenberg, like many of his contemporaries, incorporated strong frauenfeindlich [anti-women] elements into his work, through his modernist account of artistic creativity, his choice of texts, and his musical settings. Although elements of Hanging Gardens' atonal music suggest that Schoenberg valued gendered-feminine principles in his compositional style, a closer analysis of the work's musical language shows an intact masculinist hegemony. Through his deployment of uncanny tonal reminiscences, underlying tonal gestures, and closed forms in Hanging Gardens, Schoenberg ensures that the feminine-associated "excesses" of atonality remain under masculine control. This study draws upon the critical musicology of Susan McClary while arguing that Schoenberg's music is socially contingent, affected by the gender biases of his social and literary milieux. It addresses likely influences on Schoenberg's worldview including the philosophy of Otto Weininger, Freudian psychoanalysis, and a complex web of personal relationships. Finally, this analysis highlights the relevance of Schoenberg's world and its constructions of gender to modern performance practice, and argues that performers must consider interrelated historical, textual, and musical factors when interpreting Hanging Gardens in new contexts.
ContributorsGinger, Kerry Anne (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Mook, Richard (Committee member) / Norton, Kay (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2012