This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

149960-Thumbnail Image.png
Description
By the von Neumann min-max theorem, a two person zero sum game with finitely many pure strategies has a unique value for each player (summing to zero) and each player has a non-empty set of optimal mixed strategies. If the payoffs are independent, identically distributed (iid) uniform (0,1) random

By the von Neumann min-max theorem, a two person zero sum game with finitely many pure strategies has a unique value for each player (summing to zero) and each player has a non-empty set of optimal mixed strategies. If the payoffs are independent, identically distributed (iid) uniform (0,1) random variables, then with probability one, both players have unique optimal mixed strategies utilizing the same number of pure strategies with positive probability (Jonasson 2004). The pure strategies with positive probability in the unique optimal mixed strategies are called saddle squares. In 1957, Goldman evaluated the probability of a saddle point (a 1 by 1 saddle square), which was rediscovered by many authors including Thorp (1979). Thorp gave two proofs of the probability of a saddle point, one using combinatorics and one using a beta integral. In 1965, Falk and Thrall investigated the integrals required for the probabilities of a 2 by 2 saddle square for 2 × n and m × 2 games with iid uniform (0,1) payoffs, but they were not able to evaluate the integrals. This dissertation generalizes Thorp's beta integral proof of Goldman's probability of a saddle point, establishing an integral formula for the probability that a m × n game with iid uniform (0,1) payoffs has a k by k saddle square (k ≤ m,n). Additionally, the probabilities of a 2 by 2 and a 3 by 3 saddle square for a 3 × 3 game with iid uniform(0,1) payoffs are found. For these, the 14 integrals observed by Falk and Thrall are dissected into 38 disjoint domains, and the integrals are evaluated using the basic properties of the dilogarithm function. The final results for the probabilities of a 2 by 2 and a 3 by 3 saddle square in a 3 × 3 game are linear combinations of 1, π2, and ln(2) with rational coefficients.
ContributorsManley, Michael (Author) / Kadell, Kevin W. J. (Thesis advisor) / Kao, Ming-Hung (Committee member) / Lanchier, Nicolas (Committee member) / Lohr, Sharon (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2011
151976-Thumbnail Image.png
Description
Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs

Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs two basic schemes for testing parallel generated streams. The first applies serial tests to the individual streams and then tests the resulting P-values for uniformity. The second turns all the parallel generated streams into one long vector and then applies serial tests to the resulting concatenated stream. Various forms of stream dependence can be missed by each approach because neither one fully addresses the multivariate nature of the accumulated data when generators are run in parallel. This dissertation identifies these potential faults in the parallel testing methodologies of TestU01 and investigates two different methods to better detect inter-stream dependencies: correlation motivated multivariate tests and vector time series based tests. These methods have been implemented in an extension to TestU01 built in C++ and the unique aspects of this extension are discussed. A variety of different generation scenarios are then examined using the TestU01 suite in concert with the extension. This enhanced software package is found to better detect certain forms of inter-stream dependencies than the original TestU01 suites of tests.
ContributorsIsmay, Chester (Author) / Eubank, Randall (Thesis advisor) / Young, Dennis (Committee member) / Kao, Ming-Hung (Committee member) / Lanchier, Nicolas (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2013
156865-Thumbnail Image.png
Description
This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and

This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and discuss the implications of these uses for interpreting and leveraging results to produce empirically tested learning trajectories. From my summary and analysis I develop two recommendations for the cognitive researchers developing empirically supported learning trajectories. (1) A researcher should frame his/her work, and analyze others’ work, within the researcher’s image of a broadly coherent trajectory for student learning and (2) that the field should work towards a common understanding for the meaning of a hypothetical learning trajectory.

In Paper 2 I argue that prior research in online learning has tested the impact of online courses on measures such as student retention rates, satisfaction scores, and GPA but that research is needed to describe the meanings students construct for mathematical ideas researchers have identified as critical to their success in future math courses and other STEM fields. This paper discusses the need for a new focus in studying online mathematics learning and calls for cognitive researchers to begin developing a productive methodology for examining the meanings students construct while engaged in online lessons.

Paper 3 describes the online Precalculus course intervention we designed around measurement imagery and quantitative reasoning as themes that unite topics across units. I report results relative to the meanings students developed for exponential functions and related ideas (such as percent change and growth factors) while working through lessons in the intervention. I provide a conceptual analysis guiding its design and discuss pre-test and pre-interview results, post-test and post-interview results, and observations from student behaviors while interacting with lessons. I demonstrate that the targeted meanings can be productive for students, show common unproductive meanings students possess as they enter Precalculus, highlight challenges and opportunities in teaching and learning in the online environment, and discuss needed adaptations to the intervention and future research opportunities informed by my results.
ContributorsO'Bryan, Alan Eugene (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Milner, Fabio (Committee member) / Roh, Kyeong Hah (Committee member) / Tallman, Michael (Committee member) / Arizona State University (Publisher)
Created2018
155002-Thumbnail Image.png
Description
This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study.

This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study. In particular, each study distinguishes additive and multiplicative meanings for fraction and rate of change.

The first paper reports an investigation of 251 high school mathematics teachers’ meanings for slope, measurement, and rate of change. Most teachers conveyed primarily additive and formulaic meanings for slope and rate of change on written items. Few teachers conveyed that a rate of change compares the relative sizes of changes in two quantities. Teachers’ weak measurement schemes were associated with limited meanings for rate of change. Overall, the data suggests that rate of change should be a topics of targeted professional development.

The second paper reports the quantitative part of a mixed method study of 153 calculus students at a large public university. The majority of calculus students not only have weak meanings for fraction, measure, and constant rates but that having weak meanings is predictive of lower scores on a test about rate of change functions. Regression is used to determine the variation in student success on questions about rate of change functions (derivatives) associated with variation in success on fraction, measure, rate, and covariation items.

The third paper investigates the implications of two students’ fraction schemes for their understanding of rate of change functions. Students’ weak measurement schemes obstructed their ability to construct a rate of change function given the graph of an original function. The two students did not coordinate three levels of units, and struggled to relate partitioning and iterating in a way that would help them reason about fractions, rate of change, and rate of change functions.

Taken as a whole the studies show that the majority of secondary teachers and calculus students studied have weak meanings for foundational ideas and that these weaknesses cause them problems in making sense of more applications of rate of change.
ContributorsByerley, Cameron (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn P (Committee member) / Middleton, James A. (Committee member) / Saldanha, Luis (Committee member) / Mcnamara, Allen (Committee member) / Arizona State University (Publisher)
Created2016