This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 16
Filtering by

Clear all filters

152048-Thumbnail Image.png
Description
A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or

A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or an $H$-factor. A goal of this study is to extend theorems on sufficient minimum degree conditions for perfect tilings in graphs to directed graphs. Corrádi and Hajnal proved that every graph $G$ on $3k$ vertices with minimum degree $delta(G)ge2k$ has a $K_3$-factor, where $K_s$ is the complete graph on $s$ vertices. The following theorem extends this result to directed graphs: If $D$ is a directed graph on $3k$ vertices with minimum total degree $delta(D)ge4k-1$ then $D$ can be partitioned into $k$ parts each of size $3$ so that all of parts contain a transitive triangle and $k-1$ of the parts also contain a cyclic triangle. The total degree of a vertex $v$ is the sum of $d^-(v)$ the in-degree and $d^+(v)$ the out-degree of $v$. Note that both orientations of $C_3$ are considered: the transitive triangle and the cyclic triangle. The theorem is best possible in that there are digraphs that meet the minimum degree requirement but have no cyclic triangle factor. The possibility of added a connectivity requirement to ensure a cycle triangle factor is also explored. Hajnal and Szemerédi proved that if $G$ is a graph on $sk$ vertices and $delta(G)ge(s-1)k$ then $G$ contains a $K_s$-factor. As a possible extension of this celebrated theorem to directed graphs it is proved that if $D$ is a directed graph on $sk$ vertices with $delta(D)ge2(s-1)k-1$ then $D$ contains $k$ disjoint transitive tournaments on $s$ vertices. We also discuss tiling directed graph with other tournaments. This study also explores minimum total degree conditions for perfect directed cycle tilings and sufficient semi-degree conditions for a directed graph to contain an anti-directed Hamilton cycle. The semi-degree of a vertex $v$ is $min{d^+(v), d^-(v)}$ and an anti-directed Hamilton cycle is a spanning cycle in which no pair of consecutive edges form a directed path.
ContributorsMolla, Theodore (Author) / Kierstead, Henry A (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Spielberg, Jack (Committee member) / Arizona State University (Publisher)
Created2013
151429-Thumbnail Image.png
Description
A central concept of combinatorics is partitioning structures with given constraints. Partitions of on-line posets and on-line graphs, which are dynamic versions of the more familiar static structures posets and graphs, are examined. In the on-line setting, vertices are continually added to a poset or graph while a chain partition

A central concept of combinatorics is partitioning structures with given constraints. Partitions of on-line posets and on-line graphs, which are dynamic versions of the more familiar static structures posets and graphs, are examined. In the on-line setting, vertices are continually added to a poset or graph while a chain partition or coloring (respectively) is maintained. %The optima of the static cases cannot be achieved in the on-line setting. Both upper and lower bounds for the optimum of the number of chains needed to partition a width $w$ on-line poset exist. Kierstead's upper bound of $\frac{5^w-1}{4}$ was improved to $w^{14 \lg w}$ by Bosek and Krawczyk. This is improved to $w^{3+6.5 \lg w}$ by employing the First-Fit algorithm on a family of restricted posets (expanding on the work of Bosek and Krawczyk) . Namely, the family of ladder-free posets where the $m$-ladder is the transitive closure of the union of two incomparable chains $x_1\le\dots\le x_m$, $y_1\le\dots\le y_m$ and the set of comparabilities $\{x_1\le y_1,\dots, x_m\le y_m\}$. No upper bound on the number of colors needed to color a general on-line graph exists. To lay this fact plain, the performance of on-line coloring of trees is shown to be particularly problematic. There are trees that require $n$ colors to color on-line for any positive integer $n$. Furthermore, there are trees that usually require many colors to color on-line even if they are presented without any particular strategy. For restricted families of graphs, upper and lower bounds for the optimum number of colors needed to maintain an on-line coloring exist. In particular, circular arc graphs can be colored on-line using less than 8 times the optimum number from the static case. This follows from the work of Pemmaraju, Raman, and Varadarajan in on-line coloring of interval graphs.
ContributorsSmith, Matthew Earl (Author) / Kierstead, Henry A (Thesis advisor) / Colbourn, Charles (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
151231-Thumbnail Image.png
Description
Gray codes are perhaps the best known structures for listing sequences of combinatorial objects, such as binary strings. Simply defined as a minimal change listing, Gray codes vary greatly both in structure and in the types of objects that they list. More specific types of Gray codes are universal cycles

Gray codes are perhaps the best known structures for listing sequences of combinatorial objects, such as binary strings. Simply defined as a minimal change listing, Gray codes vary greatly both in structure and in the types of objects that they list. More specific types of Gray codes are universal cycles and overlap sequences. Universal cycles are Gray codes on a set of strings of length n in which the first n-1 letters of one object are the same as the last n-1 letters of its predecessor in the listing. Overlap sequences allow this overlap to vary between 1 and n-1. Some of our main contributions to the areas of Gray codes and universal cycles include a new Gray code algorithm for fixed weight m-ary words, and results on the existence of universal cycles for weak orders on [n]. Overlap cycles are a relatively new structure with very few published results. We prove the existence of s-overlap cycles for k-permutations of [n], which has been an open research problem for several years, as well as constructing 1- overlap cycles for Steiner triple and quadruple systems of every order. Also included are various other results of a similar nature covering other structures such as binary strings, m-ary strings, subsets, permutations, weak orders, partitions, and designs. These listing structures lend themselves readily to some classes of combinatorial objects, such as binary n-tuples and m-ary n-tuples. Others require more work to find an appropriate structure, such as k-subsets of an n-set, weak orders, and designs. Still more require a modification in the representation of the objects to fit these structures, such as partitions. Determining when and how we can fit these sets of objects into our three listing structures is the focus of this dissertation.
ContributorsHoran, Victoria E (Author) / Hurlbert, Glenn H. (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Colbourn, Charles (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
156198-Thumbnail Image.png
Description
The uncrossing partially ordered set $P_n$ is defined on the set of matchings on $2n$ points on a circle represented with wires. The order relation is $\tau'\leq \tau$ in $P_n$ if and only if $\tau'$ is obtained by resolving a crossing of $\tau$. %This partial order has been studied by

The uncrossing partially ordered set $P_n$ is defined on the set of matchings on $2n$ points on a circle represented with wires. The order relation is $\tau'\leq \tau$ in $P_n$ if and only if $\tau'$ is obtained by resolving a crossing of $\tau$. %This partial order has been studied by Alman-Lian-Tran, Huang-Wen-Xie, Kenyon, and Lam. %The posets $P_n$ emerged from studies of circular planar electrical networks. Circular planar electrical networks are finite weighted undirected graphs embedded into a disk, with boundary vertices and interior vertices. By Curtis-Ingerman-Morrow and de Verdi\`ere-Gitler-Vertigan, the electrical networks can be encoded with response matrices. By Lam the space of response matrices for electrical networks has a cell structure, and this cell structure can be described by the uncrossing partial orders. %Lam proves that the posets can be identified with dual Bruhat order on affine permutations of type $(n,2n)$. Using this identification, Lam proves the poset $\hat{P}_n$, the uncrossing poset $P_n$ with a unique minimum element $\hat{0}$ adjoined, is Eulerian. This thesis consists of two sets of results: (1) flag enumeration in intervals in the uncrossing poset $P_n$ and (2) cyclic sieving phenomenon on the set $P_n$.

I identify elements in $P_n$ with affine permutations of type $(0,2n)$. %This identification enables us to explicitly describe the elements in $P_n$ with the elements in $\mathcal{MP}_n$.

Using this identification, I adapt a technique in Reading for finding recursions for the cd-indices of intervals in Bruhat order of Coxeter groups to the uncrossing poset $P_n$. As a result, I produce recursions for the cd-indices of intervals in the uncrossing poset $P_n$. I also obtain a recursion for the ab-indices of intervals in the poset $\hat{P}_n$, the poset $P_n$ with a unique minimum $\hat0$ adjoined. %We define an induced subposet $\mathcal{MP}_n$ of the affine permutations under Bruhat order.

Reiner-Stanton-White defined the cyclic sieving phenomenon (CSP) associated to a finite cyclic group action on a finite set and a polynomial. Sagan observed the CSP on the set of non-crossing matchings with the $q$-Catalan polynomial. Bowling-Liang presented similar results on the set of $k$-crossing matchings for $1\leq k \leq 3$. In this dissertation, I focus on the set of all matchings on $[2n]:=\{1,2,\dots,2n\}$. I find the number of matchings fixed by $\frac{2\pi}{d}$ rotations for $d|2n$. I then find the polynomial $X_n(q)$ such that the set of matchings together with $X_n(q)$ and the cyclic group of order $2n$ exhibits the CSP.
ContributorsKim, Younghwan (Author) / Fishel, Susanna (Thesis advisor) / Bremner, Andrew (Committee member) / Czygrinow, Andrzej (Committee member) / Kierstead, Henry (Committee member) / Paupert, Julien (Committee member) / Arizona State University (Publisher)
Created2018
154926-Thumbnail Image.png
Description
The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around 1952. He defined the n-th Tamari lattice T(n) on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Despite their interesting aspects and the

The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around 1952. He defined the n-th Tamari lattice T(n) on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Despite their interesting aspects and the attention they have received, a formula for the number of maximal chains in the Tamari lattices is still unknown. The purpose of this thesis is to convey my results on progress toward the solution of this problem and to discuss future work.

A few years ago, Bergeron and Préville-Ratelle generalized the Tamari lattices to the m-Tamari lattices. The original Tamari lattices T(n) are the case m=1. I establish a bijection between maximum length chains in the m-Tamari lattices and standard m-shifted Young tableaux. Using Thrall’s formula, I thus derive the formula for the number of maximum length chains in T(n).

For each i greater or equal to -1 and for all n greater or equal to 1, I define C(i,n) to be the set of maximal chains of length n+i in T(n). I establish several properties of maximal chains (treated as tableaux) and identify a particularly special property: each maximal chain may or may not possess a plus-full-set. I show, surprisingly, that for all n greater or equal to 2i+4, each member of C(i,n) contains a plus-full-set. Utilizing this fact and a collection of maps, I obtain a recursion for the number of elements in C(i,n) and an explicit formula based on predetermined initial values. The formula is a polynomial in n of degree 3i+3. For example, the number of maximal chains of length n in T(n) is n choose 3.

I discuss current work and future plans involving certain equivalence classes of maximal chains in the Tamari lattices. If a maximal chain may be obtained from another by swapping a pair of consecutive edges with another pair in the Hasse diagram, the two maximal chains are said to differ by a square move. Two maximal chains are said to be in the same equivalence class if one may be obtained from the other by making a set of square moves.
ContributorsNelson, Luke (Author) / Fishel, Susanna (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Jones, John (Committee member) / Kierstead, Henry (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2016
155047-Thumbnail Image.png
Description
Modern software and hardware systems are composed of a large number of components. Often different components of a system interact with each other in unforeseen and undesired ways to cause failures. Covering arrays are a useful mathematical tool for testing all possible t-way interactions among the components of a system.

Modern software and hardware systems are composed of a large number of components. Often different components of a system interact with each other in unforeseen and undesired ways to cause failures. Covering arrays are a useful mathematical tool for testing all possible t-way interactions among the components of a system.

The two major issues concerning covering arrays are explicit construction of a covering array, and exact or approximate determination of the covering array number---the minimum size of a covering array. Although these problems have been investigated extensively for the last couple of decades, in this thesis we present significant improvements on both of these questions using tools from the probabilistic method and randomized algorithms.

First, a series of improvements is developed on the previously known upper bounds on covering array numbers. An estimate for the discrete Stein-Lovász-Johnson bound is derived and the Stein- Lovász -Johnson bound is improved upon using an alteration strategy. Then group actions on the set of symbols are explored to establish two asymptotic upper bounds on covering array numbers that are tighter than any of the presently known bounds.

Second, an algorithmic paradigm, called the two-stage framework, is introduced for covering array construction. A number of concrete algorithms from this framework are analyzed, and it is shown that they outperform current methods in the range of parameter values that are of practical relevance. In some cases, a reduction in the number of tests by more than 50% is achieved.

Third, the Lovász local lemma is applied on covering perfect hash families to obtain an upper bound on covering array numbers that is tightest of all known bounds. This bound leads to a Moser-Tardos type algorithm that employs linear algebraic computation over finite fields to construct covering arrays. In some cases, this algorithm outperforms currently used methods by more than an 80% margin.

Finally, partial covering arrays are introduced to investigate a few practically relevant relaxations of the covering requirement. Using probabilistic methods, bounds are obtained on partial covering arrays that are significantly smaller than for covering arrays. Also, randomized algorithms are provided that construct such arrays in expected polynomial time.
ContributorsSarakāra, Kauśika (Author) / Colbourn, Charles J. (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Richa, Andréa W. (Committee member) / Syrotiuk, Violet R. (Committee member) / Arizona State University (Publisher)
Created2016
155093-Thumbnail Image.png
Description
The Tamari lattice T(n) was originally defined on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Since then it has been studied in various areas of mathematics including cluster algebras, discrete geometry, algebraic combinatorics, and Catalan theory.

The Tamari lattice T(n) was originally defined on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Since then it has been studied in various areas of mathematics including cluster algebras, discrete geometry, algebraic combinatorics, and Catalan theory. Although in several related lattices the number of maximal chains is known, the enumeration of these chains in Tamari lattices is still an open problem.

This dissertation defines a partially-ordered set on equivalence classes of certain saturated chains of T(n) called the Tamari Block poset, TB(lambda). It further proves TB(lambda) is a graded lattice. It then shows for lambda = (n-1,...,2,1) TB(lambda) is anti-isomorphic to the Higher Stasheff-Tamari orders in dimension 3 on n+2 elements. It also investigates enumeration questions involving TB(lambda), and proves other structural results along the way.
ContributorsTreat, Kevin (Author) / Fishel, Susanna (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Jones, John (Committee member) / Childress, Nancy (Committee member) / Colbourn, Charles (Committee member) / Arizona State University (Publisher)
Created2016
155340-Thumbnail Image.png
Description
The Cambrian lattice corresponding to a Coxeter element c of An, denoted Camb(c),

is the subposet of An induced by the c-sortable elements, and the m-eralized Cambrian

lattice corresponding to c, denoted Cambm(c), is dened as a subposet of the

braid group accompanied with the right weak ordering induced by the c-sortable elements

under

The Cambrian lattice corresponding to a Coxeter element c of An, denoted Camb(c),

is the subposet of An induced by the c-sortable elements, and the m-eralized Cambrian

lattice corresponding to c, denoted Cambm(c), is dened as a subposet of the

braid group accompanied with the right weak ordering induced by the c-sortable elements

under certain conditions. Both of these families generalize the well-studied

Tamari lattice Tn rst introduced by D. Tamari in 1962. S. Fishel and L. Nelson

enumerated the chains of maximum length of Tamari lattices.

In this dissertation, I study the chains of maximum length of the Cambrian and

m-eralized Cambrian lattices, precisely, I enumerate these chains in terms of other

objects, and then nd formulas for the number of these chains for all m-eralized

Cambrian lattices of A1, A2, A3, and A4. Furthermore, I give an alternative proof

for the number of chains of maximum length of the Tamari lattice Tn, and provide

conjectures and corollaries for the number of these chains for all m-eralized Cambrian

lattices of A5.
ContributorsAl-Suleiman, Sultan (Author) / Fishel, Susanna (Thesis advisor) / Childress, Nancy (Committee member) / Czygrinow, Andrzej (Committee member) / Jones, John (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2017
151578-Thumbnail Image.png
Description
Every graph can be colored with one more color than its maximum degree. A well-known theorem of Brooks gives the precise conditions under which a graph can be colored with maximum degree colors. It is natural to ask for the required conditions on a graph to color with one less

Every graph can be colored with one more color than its maximum degree. A well-known theorem of Brooks gives the precise conditions under which a graph can be colored with maximum degree colors. It is natural to ask for the required conditions on a graph to color with one less color than the maximum degree; in 1977 Borodin and Kostochka conjectured a solution for graphs with maximum degree at least 9: as long as the graph doesn't contain a maximum-degree-sized clique, it can be colored with one fewer than the maximum degree colors. This study attacks the conjecture on multiple fronts. The first technique is an extension of a vertex shuffling procedure of Catlin and is used to prove the conjecture for graphs with edgeless high vertex subgraphs. This general approach also bears more theoretical fruit. The second technique is an extension of a method Kostochka used to reduce the Borodin-Kostochka conjecture to the maximum degree 9 case. Results on the existence of independent transversals are used to find an independent set intersecting every maximum clique in a graph. The third technique uses list coloring results to exclude induced subgraphs in a counterexample to the conjecture. The classification of such excludable graphs that decompose as the join of two graphs is the backbone of many of the results presented here. The fourth technique uses the structure theorem for quasi-line graphs of Chudnovsky and Seymour in concert with the third technique to prove the Borodin-Kostochka conjecture for claw-free graphs. The fifth technique adds edges to proper induced subgraphs of a minimum counterexample to gain control over the colorings produced by minimality. The sixth technique adapts a recoloring technique originally developed for strong coloring by Haxell and by Aharoni, Berger and Ziv to general coloring. Using this recoloring technique, the Borodin-Kostochka conjectured is proved for graphs where every vertex is in a large clique. The final technique is naive probabilistic coloring as employed by Reed in the proof of the Borodin-Kostochka conjecture for large maximum degree. The technique is adapted to prove the Borodin-Kostochka conjecture for list coloring for large maximum degree.
ContributorsRabern, Landon (Author) / Kierstead, Henry (Thesis advisor) / Colbourn, Charles (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Arizona State University (Publisher)
Created2013
149599-Thumbnail Image.png
Description
The primary focus of this dissertation lies in extremal combinatorics, in particular intersection theorems in finite set theory. A seminal result in the area is the theorem of Erdos, Ko and Rado which finds the upper bound on the size of an intersecting family of subsets of an n-element set

The primary focus of this dissertation lies in extremal combinatorics, in particular intersection theorems in finite set theory. A seminal result in the area is the theorem of Erdos, Ko and Rado which finds the upper bound on the size of an intersecting family of subsets of an n-element set and characterizes the structure of families which attain this upper bound. A major portion of this dissertation focuses on a recent generalization of the Erdos--Ko--Rado theorem which considers intersecting families of independent sets in graphs. An intersection theorem is proved for a large class of graphs, namely chordal graphs which satisfy an additional condition and similar problems are considered for trees, bipartite graphs and other special classes. A similar extension is also formulated for cross-intersecting families and results are proved for chordal graphs and cycles. A well-known generalization of the EKR theorem for k-wise intersecting families due to Frankl is also considered. A stability version of Frankl's theorem is proved, which provides additional structural information about k-wise intersecting families which have size close to the maximum upper bound. A graph-theoretic generalization of Frankl's theorem is also formulated and proved for perfect matching graphs. Finally, a long-standing conjecture of Chvatal regarding structure of maximum intersecting families in hereditary systems is considered. An intersection theorem is proved for hereditary families which have rank 3 using a powerful tool of Erdos and Rado which is called the Sunflower Lemma.
ContributorsKamat, Vikram M (Author) / Hurlbert, Glenn (Thesis advisor) / Colbourn, Charles (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Kierstead, Henry (Committee member) / Arizona State University (Publisher)
Created2011