This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150065-Thumbnail Image.png
Description
Let T be a tournament with edges colored with any number of colors. A rainbow triangle is a 3-colored 3-cycle. A monochromatic sink of T is a vertex which can be reached along a monochromatic path by every other vertex of T. In 1982, Sands, Sauer, and Woodrow asked if

Let T be a tournament with edges colored with any number of colors. A rainbow triangle is a 3-colored 3-cycle. A monochromatic sink of T is a vertex which can be reached along a monochromatic path by every other vertex of T. In 1982, Sands, Sauer, and Woodrow asked if T has no rainbow triangles, then does T have a monochromatic sink? I answer yes in the following five scenarios: when all 4-cycles are monochromatic, all 4-semi-cycles are near-monochromatic, all 5-semi-cycles are near-monochromatic, all back-paths of an ordering of the vertices are vertex disjoint, and for any vertex in an ordering of the vertices, its back edges are all colored the same. I provide conjectures related to these results that ask if the result is also true for larger cycles and semi-cycles. A ruling class is a set of vertices in T so that every other vertex of T can reach a vertex of the ruling class along a monochromatic path. Every tournament contains a ruling class, although the ruling class may have a trivial size of the order of T. Sands, Sauer, and Woodrow asked (again in 1982) about the minimum size of ruling classes in T. In particular, in a 3-colored tournament, must there be a ruling class of size 3? I answer yes when it is required that all 2-colored cycles have an edge xy so that y has a monochromatic path to x. I conjecture that there is a ruling class of size 3 if there are no rainbow triangles in T. Finally, I present the new topic of alpha-step-chromatic sinks along with related results. I show that for certain values of alpha, a tournament is not guaranteed to have an alpha-step-chromatic sink. In fact, similar to the previous results in this thesis, alpha-step-chromatic sinks can only be demonstrated when additional restrictions are put on the coloring of the tournament's edges, such as excluding rainbow triangles. However, when proving the existence of alpha-step-chromatic sinks, it is only necessary to exclude special types of rainbow triangles.
ContributorsBland, Adam K (Author) / Kierstead, Henry A (Thesis advisor) / Czygrinow, Andrzej M (Committee member) / Hurlbert, Glenn H. (Committee member) / Barcelo, Helene (Committee member) / Aen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
149583-Thumbnail Image.png
Description
In Iwasawa theory, one studies how an arithmetic or geometric object grows as its field of definition varies over certain sequences of number fields. For example, let $F/\mathbb{Q}$ be a finite extension of fields, and let $E:y^2 = x^3 + Ax + B$ with $A,B \in F$ be an elliptic

In Iwasawa theory, one studies how an arithmetic or geometric object grows as its field of definition varies over certain sequences of number fields. For example, let $F/\mathbb{Q}$ be a finite extension of fields, and let $E:y^2 = x^3 + Ax + B$ with $A,B \in F$ be an elliptic curve. If $F = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots F_\infty = \bigcup_{i=0}^\infty F_i$, one may be interested in properties like the ranks and torsion subgroups of the increasing family of curves $E(F_0) \subseteq E(F_1) \subseteq \cdots \subseteq E(F_\infty)$. The main technique for studying this sequence of curves when $\Gal(F_\infty/F)$ has a $p$-adic analytic structure is to use the action of $\Gal(F_n/F)$ on $E(F_n)$ and the Galois cohomology groups attached to $E$, i.e. the Selmer and Tate-Shafarevich groups. As $n$ varies, these Galois actions fit into a coherent family, and taking a direct limit one obtains a short exact sequence of modules $$0 \longrightarrow E(F_\infty) \otimes(\mathbb{Q}_p/\mathbb{Z}_p) \longrightarrow \Sel_E(F_\infty)_p \longrightarrow \Sha_E(F_\infty)_p \longrightarrow 0 $$ over the profinite group algebra $\mathbb{Z}_p[[\Gal(F_\infty/F)]]$. When $\Gal(F_\infty/F) \cong \mathbb{Z}_p$, this ring is isomorphic to $\Lambda = \mathbb{Z}_p[[T]]$, and the $\Lambda$-module structure of $\Sel_E(F_\infty)_p$ and $\Sha_E(F_\infty)_p$ encode all the information about the curves $E(F_n)$ as $n$ varies. In this dissertation, it will be shown how one can classify certain finitely generated $\Lambda$-modules with fixed characteristic polynomial $f(T) \in \mathbb{Z}_p[T]$ up to isomorphism. The results yield explicit generators for each module up to isomorphism. As an application, it is shown how to identify the isomorphism class of $\Sel_E(\mathbb{Q_\infty})_p$ in this explicit form, where $\mathbb{Q}_\infty$ is the cyclotomic $\mathbb{Z}_p$-extension of $\mathbb{Q}$, and $E$ is an elliptic curve over $\mathbb{Q}$ with good ordinary reduction at $p$, and possessing the property that $E(\mathbb{Q})$ has no $p$-torsion.
ContributorsFranks, Chase (Author) / Childress, Nancy (Thesis advisor) / Barcelo, Helene (Committee member) / Bremner, Andrew (Committee member) / Jones, John (Committee member) / Spielberg, Jack (Committee member) / Arizona State University (Publisher)
Created2011