This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

151633-Thumbnail Image.png
Description
In this dissertation, an innovative framework for designing a multi-product integrated supply chain network is proposed. Multiple products are shipped from production facilities to retailers through a network of Distribution Centers (DCs). Each retailer has an independent, random demand for multiple products. The particular problem considered in this study also

In this dissertation, an innovative framework for designing a multi-product integrated supply chain network is proposed. Multiple products are shipped from production facilities to retailers through a network of Distribution Centers (DCs). Each retailer has an independent, random demand for multiple products. The particular problem considered in this study also involves mixed-product transshipments between DCs with multiple truck size selection and routing delivery to retailers. Optimally solving such an integrated problem is in general not easy due to its combinatorial nature, especially when transshipments and routing are involved. In order to find out a good solution effectively, a two-phase solution methodology is derived: Phase I solves an integer programming model which includes all the constraints in the original model except that the routings are simplified to direct shipments by using estimated routing cost parameters. Then Phase II model solves the lower level inventory routing problem for each opened DC and its assigned retailers. The accuracy of the estimated routing cost and the effectiveness of the two-phase solution methodology are evaluated, the computational performance is found to be promising. The problem is able to be heuristically solved within a reasonable time frame for a broad range of problem sizes (one hour for the instance of 200 retailers). In addition, a model is generated for a similar network design problem considering direct shipment and consolidation within the same product set opportunities. A genetic algorithm and a specific problem heuristic are designed, tested and compared on several realistic scenarios.
ContributorsXia, Mingjun (Author) / Askin, Ronald (Thesis advisor) / Mirchandani, Pitu (Committee member) / Zhang, Muhong (Committee member) / Kierstead, Henry (Committee member) / Arizona State University (Publisher)
Created2013
151051-Thumbnail Image.png
Description
Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time quotes ensure profitability for supplier, but discourage the customers from

Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time quotes ensure profitability for supplier, but discourage the customers from placing orders. Low price and lead times, on the other hand, generally result in high demand, but do not necessarily ensure profitability. The price and lead time quotation problem considers the trade-off between offering high and low prices and lead times. The recent practices in make-to- order manufacturing companies reveal the importance of dynamic quotation strategies, under which the prices and lead time quotes flexibly change depending on the status of the system. In this dissertation, the objective is to model a make-to-order manufacturing system and explore various aspects of dynamic quotation strategies such as the behavior of optimal price and lead time decisions, the impact of customer preferences on optimal decisions, the benefits of employing dynamic quotation in comparison to simpler quotation strategies, and the benefits of coordinating price and lead time decisions. I first consider a manufacturer that receives demand from spot purchasers (who are quoted dynamic price and lead times), as well as from contract customers who have agree- ments with the manufacturer with fixed price and lead time terms. I analyze how customer preferences affect the optimal price and lead time decisions, the benefits of dynamic quo- tation, and the optimal mix of spot purchaser and contract customers. These analyses necessitate the computation of expected tardiness of customer orders at the moment cus- tomer enters the system. Hence, in the second part of the dissertation, I develop method- ologies to compute the expected tardiness in multi-class priority queues. For the trivial single class case, a closed formulation is obtained. For the more complex multi-class case, numerical inverse Laplace transformation algorithms are developed. In the last part of the dissertation, I model a decentralized system with two components. Marketing department determines the price quotes with the objective of maximizing revenues, and manufacturing department determines the lead time quotes to minimize lateness costs. I discuss the ben- efits of coordinating price and lead time decisions, and develop an incentivization scheme to reduce the negative impacts of lack of coordination.
ContributorsHafizoglu, Ahmet Baykal (Author) / Gel, Esma S (Thesis advisor) / Villalobos, Jesus R (Committee member) / Mirchandani, Pitu (Committee member) / Keskinocak, Pinar (Committee member) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2012
187307-Thumbnail Image.png
Description
Networks are a versatile modeling tool for the cyber and physical infrastructure that characterize society. They can be used to describe system spatiotemporal dynamics, including distribution of commodities, movement of agents, and data transmission. This flexibility has resulted in the widespread use of network optimization techniques for decision-making in telecommunications,

Networks are a versatile modeling tool for the cyber and physical infrastructure that characterize society. They can be used to describe system spatiotemporal dynamics, including distribution of commodities, movement of agents, and data transmission. This flexibility has resulted in the widespread use of network optimization techniques for decision-making in telecommunications, transportation, commerce, among other systems. However, realistic network problems are typically large-scale and require the use of integer variables to incorporate design or logical system constraints. This makes such problems hard to solve and precludes their wide applicability in the solution of applied problems. This dissertation studies four large-scale optimization problems with underlying network structure in different domain applications, including wireless sensor networks, wastewater monitoring, and scheduling. The problems of interest are formulated using mixed-integer optimization formulations. The proposed solution approaches in this dissertation include branch-and-cut and heuristic algorithms, which are enhanced with network-based valid inequalities and network reduction techniques. The first chapter studies a relay node placement problem in wireless sensor networks, with and without the presence of transmission obstacles in the deployment region. The proposed integer linear programming approach leverages the underlying network structure to produce valid inequalities and network reduction heuristics, which are incorporated in the branch-and-bound exploration. The solution approach outperforms the equivalent nonlinear model and solves instances with up to 1000 sensors within reasonable time. The second chapter studies the continuous version of the maximum capacity (widest) path interdiction problem and introduces the first known polynomial time algorithm to solve the problem using a combination of binary search and the discrete version of the Newton’s method. The third chapter explores the service agent transport interdiction problem in autonomous vehicle systems, where an agent schedules service tasks in the presence of an adversary. This chapter proposes a single stage branch-and-cut algorithm to solve the problem, along with several enhancement techniques to improve scalability. The last chapter studies the optimal placement of sensors in a wastewater network to minimize the maximum coverage (load) of placed sensors. This chapter proposes a branch-and-cut algorithm enhanced with network reduction techniques and strengthening constraints.
ContributorsMitra, Ankan (Author) / Sefair, Jorge A (Thesis advisor) / Mirchandani, Pitu (Committee member) / Grubesic, Anthony (Committee member) / Byeon, Geunyeong (Committee member) / Arizona State University (Publisher)
Created2023
158577-Thumbnail Image.png
Description
This dissertation focuses on three large-scale optimization problems and devising algorithms to solve them. In addition to the societal impact of each problem’s solution, this dissertation contributes to the optimization literature a set of decomposition algorithms for problems whose optimal solution is sparse. These algorithms exploit problem-specific properties and use

This dissertation focuses on three large-scale optimization problems and devising algorithms to solve them. In addition to the societal impact of each problem’s solution, this dissertation contributes to the optimization literature a set of decomposition algorithms for problems whose optimal solution is sparse. These algorithms exploit problem-specific properties and use tailored strategies based on iterative refinement (outer-approximations). The proposed algorithms are not rooted in duality theory, providing an alternative to existing methods based on linear programming relaxations. However, it is possible to embed existing decomposition methods into the proposed framework. These general decomposition principles extend to other combinatorial optimization problems.

The first problem is a route assignment and scheduling problem in which a set of vehicles need to traverse a directed network while maintaining a minimum inter-vehicle distance at any time. This problem is inspired by applications in hazmat logistics and the coordination of autonomous agents. The proposed approach includes realistic features such as continuous-time vehicle scheduling, heterogeneous speeds, minimum and maximum waiting times at any node, among others.

The second problem is a fixed-charge network design, which aims to find a minimum-cost plan to transport a target amount of a commodity between known origins and destinations. In addition to the typical flow decisions, the model chooses the capacity of each arc and selects sources and sinks. The proposed algorithms admit any nondecreasing piecewise linear cost structure. This model is applied to the Carbon Capture and Storage (CCS) problem, which is to design a minimum-cost pipeline network to transport CO2 between industrial sources and geologic reservoirs for long-term storage.

The third problem extends the proposed decomposition framework to a special case of joint chance constraint programming with independent random variables. This model is applied to the probabilistic transportation problem, where demands are assumed stochastic and independent. Using an empirical probability distribution, this problem is formulated as an integer program with the goal of finding a minimum-cost distribution plan that satisfies all the demands with a minimum given probability. The proposed scalable algorithm is based on a concave envelop approximation of the empirical probability function, which is iteratively refined as needed.
ContributorsMatin Moghaddam, Navid (Author) / Sefair, Jorge (Thesis advisor) / Mirchandani, Pitu (Committee member) / Escobedo, Adolfo (Committee member) / Grubesic, Anthony (Committee member) / Arizona State University (Publisher)
Created2020
161516-Thumbnail Image.png
Description
Biodiversity has been declining during the last decades due to habitat loss, landscape deterioration, environmental change, and human-related activities. In addition to its economic and cultural value, biodiversity plays an important role in keeping an environment’s ecosystem in balance. Disrupting such processes can reduce the provision of natural resources such

Biodiversity has been declining during the last decades due to habitat loss, landscape deterioration, environmental change, and human-related activities. In addition to its economic and cultural value, biodiversity plays an important role in keeping an environment’s ecosystem in balance. Disrupting such processes can reduce the provision of natural resources such as food and water, which in turn yields a direct threat to human health. Protecting and restoring natural areas is fundamental to preserve biodiversity and to mitigate the effects of ongoing environmental change. Unfortunately, it is impossible to protect every critical area due to resource limitations, requiring the use of advanced decision tools for the design of conservation plans. This dissertation studies three problems on the design of wildlife corridors and reserves that include patch-specific conservation decisions under spatial, operational, ecological, and biological requirements. In addition to the ecological impact of each problem’s solution, this dissertation contributes a set of formulations, valid inequalities, and pre-processing and solution algorithms for optimization problems with spatial requirements. The first problem is a utility-based corridor design problem to connect fragmented habitats, where each patch has a utility value reflecting its quality. The corridor must satisfy geometry requirements such as a connectivity and minimum width. We propose a mix-integer programming (MIP) model to maximize the total utility of the corridor under the given geometry requirements as well as a budget constraint to reflect the acquisition (or restoration) cost of the selected patches. To overcome the computational difficulty when solving large-scale instances, we develop multiple acceleration techniques, including a brand-and-cut algorithm enhanced with problem-specific valid inequalities and a bound-improving heuristic triggered at each integer node in the branch-and-bound exploration. We test the proposed model and solution algorithm using large-scale fabricated instances and a real case study for the design of an ecological corridor for the Florida Panther. Our modeling framework is able to solve instances of up to 1500 patches within 2 hours to optimality or with a small optimality gap. The second problem introduces the species movement across the fragmented landscape into the corridor design problem. The premise is that dispersal dynamics, if available, must inform the design to account for the corridor’s usage by the species. To this end, we propose a spatial discrete-time absorbing Markov chain (DTMC) approach to represent species dispersal and develop short- and long-term landscape usage metrics. We explore two different types of design problems: open and closed corridors. An open corridor is a sequence of landscape patches used by the species to disperse out of a habitat. For this case, we devise a dynamic programming algorithm that implicitly enumerates possible corridors and finds that of maximum probability. The second problem is to find a closed corridor of maximum probability that connects two fragmented habitats. To solve this problem variant, we extended the framework from the utility-based corridor design problem by blending the recursive Markov chain equations with a network flow nonlinear formulation. The third problem leverages on the DTMC approach to explore a reserve design problem with spatial requirements like connectivity and compactness. We approximate the compactness using the concept of maximum reserve diameter, i.e., the largest distance allowed between two patch in the reserve. To solve this problem, we devise a two-stage approach that balances the trade-off between reserve usage probability and compactness. The first stage's problem is to detect a subset of patches of maximum usage probability, while the second stage's problem imposes the geometry requirements on the optimal solution obtained from the first stage. To overcome the computational difficulty of large-scale landscapes, we develop tailored solution algorithms, including a warm-up heuristic to initialize the branch-and-bound exploration, problem-specific valid inequalities, and a decomposition strategy that sequentially solves smaller problems on landscape partitions.
ContributorsWang, Chao (Author) / Sefair, Jorge A. (Thesis advisor) / Mirchandani, Pitu (Committee member) / Pavlic, Theodore (Committee member) / Tong, Daoqin (Committee member) / Arizona State University (Publisher)
Created2021