This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 257
Filtering by

Clear all filters

152131-Thumbnail Image.png
Description
The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research

The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research efforts to study these vitally important systems. Expected outcomes from easily accessible test environments and more tractable studies include the development of more advanced and adaptive material systems, including biological systems, particularly as humans ponder human exploration in deep space. The specific focus of the research was the design and development of a prototypical experimental test system that could preliminarily meet the challenging design specifications required of such test systems. Guided by a more unified theoretical foundation and building upon concept design and development heuristics, assessment of the feasibility of two experimental test systems was explored. Test System I was a rotating wall reactor experimental system that closely followed the specifications of a similar test system, Synthecon, designed by NASA contractors and thus closely mimicked microgravity conditions of the space shuttle and station. The latter includes terminal velocity conditions experienced by both innate material systems, as well as, biological systems, including living tissue and humans but has the ability to extend to include those material test systems associated with mineralization processes. Test System II is comprised of a unique vertical column design that offered more easily controlled fluid mechanical test conditions over a much wider flow regime that was necessary to achieving terminal velocities under free convection-less conditions that are important in mineralization processes. Preliminary results indicate that Test System II offers distinct advantages in studying microgravity effects in test systems operating in unit gravity environments and particularly when investigating mineralization and related processes. Verification of the Test System II was performed on validating microgravity effects on calcite mineralization processes reported earlier others. There studies were conducted on calcite mineralization in fixed-wing, reduced gravity aircraft, known as the `vomit comet' where reduced gravity conditions are include for very short (~20second) time periods. Preliminary results indicate that test systems, such as test system II, can be devised to assess microgravity conditions in unit gravity environments, such as earth. Furthermore, the preliminary data obtained on calcite formation suggest that strictly physicochemical mechanisms may be the dominant factors that control adaptation in materials processes, a theory first proposed by Liu et al. Thus the result of this study may also help shine a light on the problem of early osteoporosis in astronauts and long term interest in deep space exploration.
ContributorsSeyedmadani, Kimia (Author) / Pizziconi, Vincent (Thesis advisor) / Towe, Bruce (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2013
152247-Thumbnail Image.png
Description
Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR

Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR sensor paradigm for the purpose of small molecule detection. The detection limits of two orthogonal components of SPR measurement are targeted: speed and sensitivity. In the context of this report, speed refers to the dynamic range of measured kinetic rate constants, while sensitivity refers to the target molecule mass limitation of conventional SPR measurement. A simple device for high-speed microfluidic delivery of liquid samples to a sensor surface is presented to address the temporal limitations of conventional SPR measurement. The time scale of buffer/sample switching is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement. Charge-based detection of small molecules is demonstrated by plasmonic-based electrochemical impedance microscopy (P-EIM). The dependence of surface plasmon resonance (SPR) on surface charge density is used to detect small molecules (60-120 Da) printed on a dextran-modified sensor surface. The SPR response to an applied ac potential is a function of the surface charge density. This optical signal is comprised of a dc and an ac component, and is measured with high spatial resolution. The amplitude and phase of local surface impedance is provided by the ac component. The phase signal of the small molecules is a function of their charge status, which is manipulated by the pH of a solution. This technique is used to detect and distinguish small molecules based on their charge status, thereby circumventing the mass limitation (~100 Da) of conventional SPR measurement.
ContributorsMacGriff, Christopher Assiff (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / LaBaer, Joshua (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2013
151913-Thumbnail Image.png
Description
In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional development treatment was administered to the treatment group during one

In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional development treatment was administered to the treatment group during one semester, and then a follow-up replication treatment was administered to the control group during the subsequent semester. Results revealed significant differences in teacher knowledge as a result of the treatment using two instruments. The Learning Mathematics for Teaching scales were used to detect changes in mathematical knowledge for teaching, and an online sorting task was used to detect changes in teachers' knowledge of their standards. Results also indicated differences in classroom practice between pairs of matched teachers selected to participate in classroom observations and interviews. No statistical difference was detected between the groups' student assessment scores using the district's benchmark assessment system. This efficacy study contributes to the literature in two ways. First, it provides an evidence base for a professional development model designed to promote effective implementation of the Common Core State Standards for Mathematics. Second, it addresses ways to impact and measure teachers' knowledge of curriculum in addition to their mathematical content knowledge. The treatment was designed to focus on knowledge of curriculum, but it also successfully impacted teachers' specialized content knowledge, knowledge of content and students, and knowledge of content and teaching.
ContributorsRimbey, Kimberly A (Author) / Middleton, James A. (Thesis advisor) / Sloane, Finbarr (Committee member) / Atkinson, Robert K (Committee member) / Arizona State University (Publisher)
Created2013
152048-Thumbnail Image.png
Description
A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or

A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or an $H$-factor. A goal of this study is to extend theorems on sufficient minimum degree conditions for perfect tilings in graphs to directed graphs. Corrádi and Hajnal proved that every graph $G$ on $3k$ vertices with minimum degree $delta(G)ge2k$ has a $K_3$-factor, where $K_s$ is the complete graph on $s$ vertices. The following theorem extends this result to directed graphs: If $D$ is a directed graph on $3k$ vertices with minimum total degree $delta(D)ge4k-1$ then $D$ can be partitioned into $k$ parts each of size $3$ so that all of parts contain a transitive triangle and $k-1$ of the parts also contain a cyclic triangle. The total degree of a vertex $v$ is the sum of $d^-(v)$ the in-degree and $d^+(v)$ the out-degree of $v$. Note that both orientations of $C_3$ are considered: the transitive triangle and the cyclic triangle. The theorem is best possible in that there are digraphs that meet the minimum degree requirement but have no cyclic triangle factor. The possibility of added a connectivity requirement to ensure a cycle triangle factor is also explored. Hajnal and Szemerédi proved that if $G$ is a graph on $sk$ vertices and $delta(G)ge(s-1)k$ then $G$ contains a $K_s$-factor. As a possible extension of this celebrated theorem to directed graphs it is proved that if $D$ is a directed graph on $sk$ vertices with $delta(D)ge2(s-1)k-1$ then $D$ contains $k$ disjoint transitive tournaments on $s$ vertices. We also discuss tiling directed graph with other tournaments. This study also explores minimum total degree conditions for perfect directed cycle tilings and sufficient semi-degree conditions for a directed graph to contain an anti-directed Hamilton cycle. The semi-degree of a vertex $v$ is $min{d^+(v), d^-(v)}$ and an anti-directed Hamilton cycle is a spanning cycle in which no pair of consecutive edges form a directed path.
ContributorsMolla, Theodore (Author) / Kierstead, Henry A (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Spielberg, Jack (Committee member) / Arizona State University (Publisher)
Created2013
152050-Thumbnail Image.png
Description
In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group)

In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group) be the $\epsilon_i$-eigenspace component of the $p$-Sylow subgroup of the class group of the field at the $m$-th level in a $\mathbb{Z}_p$-extension; and let $IACG^i_m$ (Iwasawa analytic class group) be ${\mathbb{Z}_p[[T]]/((1+T)^{p^m}-1,f(T,\omega^{1-i}))}$, where $f$ is the associated Iwasawa power series. It is expected that $CG_m^i$ and $IACG^i_m$ be isomorphic, providing us with a powerful connection between algebraic and analytic techniques; however, as of yet, this isomorphism is unestablished in general. I consider the existence and the properties of an exact sequence $$0\longrightarrow\ker{\longrightarrow}CG_m^i{\longrightarrow}IACG_m^i{\longrightarrow}\textrm{coker}\longrightarrow0.$$ In the case of a $\mathbb{Z}_p$-extension where the Main Conjecture is established, there exists a pseudo-isomorphism between the respective inverse limits of $CG_m^i$ and $IACG_m^i$. I consider conditions for when such a pseudo-isomorphism immediately gives the existence of the desired exact sequence, and I also consider work-around methods that preserve cardinality for otherwise. However, I primarily focus on constructing conditions to verify if a given $m$ is sufficiently large that the kernel and cokernel of the above exact sequence have become well-behaved, providing similarity of growth both in the size and in the structure of $CG_m^i$ and $IACG_m^i$; as well as conditions to determine if any such $m$ exists. The primary motivating idea is that if $IACG_m^i$ is relatively easy to work with, and if the relationship between $CG_m^i$ and $IACG_m^i$ is understood; then $CG_m^i$ becomes easier to work with. Moreover, while the motivating framework is stated concretely in terms of the cyclotomic $\mathbb{Z}_p$-extension of $p$-power roots of unity, all results are generally applicable to arbitrary $\mathbb{Z}_p$-extensions as they are developed in terms of Iwasawa-Theory-inspired, yet abstracted, algebraic results on maps between inverse limits.
ContributorsElledge, Shawn Michael (Author) / Childress, Nancy (Thesis advisor) / Bremner, Andrew (Committee member) / Fishel, Susanna (Committee member) / Jones, John (Committee member) / Paupert, Julien (Committee member) / Arizona State University (Publisher)
Created2013
151753-Thumbnail Image.png
Description
Solution conformations and dynamics of proteins and protein-DNA complexes are often difficult to predict from their crystal structures. The crystal structure only shows a snapshot of the different conformations these biological molecules can have in solution. Multiple different conformations can exist in solution and potentially have more importance in the

Solution conformations and dynamics of proteins and protein-DNA complexes are often difficult to predict from their crystal structures. The crystal structure only shows a snapshot of the different conformations these biological molecules can have in solution. Multiple different conformations can exist in solution and potentially have more importance in the biological activity. DNA sliding clamps are a family of proteins with known crystal structures. These clamps encircle the DNA and enable other proteins to interact more efficiently with the DNA. Eukaryotic PCNA and prokaryotic β clamp are two of these clamps, some of the most stable homo-oligomers known. However, their solution stability and conformational equilibrium have not been investigated in depth before. Presented here are the studies involving two sliding clamps: yeast PCNA and bacterial β clamp. These studies show that the β clamp has a very different solution stability than PCNA. These conclusions were reached through various different fluorescence-based experiments, including fluorescence correlation spectroscopy (FCS), Förster resonance energy transfer (FRET), single molecule fluorescence, and various time resolved fluorescence techniques. Interpretations of these, and all other, fluorescence-based experiments are often affected by the properties of the fluorophores employed. Often the fluorescence properties of these fluorophores are influenced by their microenvironments. Fluorophores are known to sometimes interact with biological molecules, and this can have pronounced effects on the rotational mobility and photophysical properties of the dye. Misunderstanding the effect of these photophysical and rotational properties can lead to a misinterpretation of the obtained data. In this thesis, photophysical behaviors of various organic dyes were studied in the presence of deoxymononucleotides to examine more closely how interactions between fluorophores and DNA bases can affect fluorescent properties. Furthermore, the properties of cyanine dyes when bound to DNA and the effect of restricted rotation on FRET are presented in this thesis. This thesis involves studying fluorophore photophysics in various microenvironments and then expanding into the solution stability and dynamics of the DNA sliding clamps.
ContributorsRanjit, Suman (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
151942-Thumbnail Image.png
Description
Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are

Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are entering college ill prepared for the rigors of higher education, lacking understanding of basic and important principles (ACT, 2012). The desire to increase academic achievement is a wide held aspiration in education and the idea of adapting instruction to individuals is one approach to accomplish this goal (Lalley & Gentile, 2009a). Frequently, adaptive learning environments rely on a mastery learning approach, it is thought that when students are afforded the opportunity to master the material, deeper and more meaningful learning is likely to occur. Researchers generally agree that the learning environment, the teaching approach, and the students' attributes are all important to understanding the conditions that promote academic achievement (Bandura, 1977; Bloom, 1968; Guskey, 2010; Cassen, Feinstein & Graham, 2008; Changeiywo, Wambugu & Wachanga, 2011; Lee, 2012; Schunk, 1991; Van Dinther, Dochy & Segers, 2011). The present study investigated the role of college students' affective attributes and skills, such as academic competence and academic resilience, in an adaptive mastery-based learning environment on their academic performance, while enrolled in a remedial mathematics course. The results showed that the combined influence of students' affective attributes and academic resilience had a statistically significant effect on students' academic performance. Further, the mastery-based learning environment also had a significant effect on their academic competence and academic performance.
ContributorsFoshee, Cecile Mary (Author) / Atkinson, Robert K (Thesis advisor) / Elliott, Stephen N. (Committee member) / Horan, John (Committee member) / Arizona State University (Publisher)
Created2013
151965-Thumbnail Image.png
Description
Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In

Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In particular, the focus was on the stable patterns of reasoning, known as ways of thinking, which students applied in a variety of combinatorial situations and tasks. This study catalogued students' ways of thinking about solution sets as they progressed through an instructional sequence. In addition, the relationships between the catalogued ways of thinking were explored. Further, the study investigated the challenges students experienced as they interacted with the tasks and instructional interventions, and how students' ways of thinking evolved as these challenges were overcome. Finally, it examined the role of instruction in guiding students to develop and extend their ways of thinking. Two pairs of undergraduate students with no formal experience with combinatorics participated in one of the two consecutive teaching experiments conducted in Spring 2012. Many ways of thinking emerged through the grounded theory analysis of the data, but only eight were identified as robust. These robust ways of thinking were classified into three categories: Subsets, Odometer, and Problem Posing. The Subsets category encompasses two ways of thinking, both of which ultimately involve envisioning the solution set as the union of subsets. The three ways of thinking in Odometer category involve holding an item or a set of items constant and systematically varying the other items involved in the counting process. The ways of thinking belonging to Problem Posing category involve spontaneously posing new, related combinatorics problems and finding relationships between the solution sets of the original and the new problem. The evolution of students' ways of thinking in the Problem Posing category was analyzed. This entailed examining the perturbation experienced by students and the resulting accommodation of their thinking. It was found that such perturbation and its resolution was often the result of an instructional intervention. Implications for teaching practice are discussed.
ContributorsHalani, Aviva (Author) / Roh, Kyeong Hah (Thesis advisor) / Fishel, Susanna (Committee member) / Saldanha, Luis (Committee member) / Thompson, Patrick (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2013
151976-Thumbnail Image.png
Description
Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs

Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs two basic schemes for testing parallel generated streams. The first applies serial tests to the individual streams and then tests the resulting P-values for uniformity. The second turns all the parallel generated streams into one long vector and then applies serial tests to the resulting concatenated stream. Various forms of stream dependence can be missed by each approach because neither one fully addresses the multivariate nature of the accumulated data when generators are run in parallel. This dissertation identifies these potential faults in the parallel testing methodologies of TestU01 and investigates two different methods to better detect inter-stream dependencies: correlation motivated multivariate tests and vector time series based tests. These methods have been implemented in an extension to TestU01 built in C++ and the unique aspects of this extension are discussed. A variety of different generation scenarios are then examined using the TestU01 suite in concert with the extension. This enhanced software package is found to better detect certain forms of inter-stream dependencies than the original TestU01 suites of tests.
ContributorsIsmay, Chester (Author) / Eubank, Randall (Thesis advisor) / Young, Dennis (Committee member) / Kao, Ming-Hung (Committee member) / Lanchier, Nicolas (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2013
151790-Thumbnail Image.png
Description
In 2007, Arizona voters passed House Bill (HB) 2064, a law that fundamentally restructured the Structured English Immersion (SEI) program, putting into place a 4-hour English language development (ELD) block for educating English language learners (ELLs). Under this new language policy, ELL students are segregated from their English-speaking peers to

In 2007, Arizona voters passed House Bill (HB) 2064, a law that fundamentally restructured the Structured English Immersion (SEI) program, putting into place a 4-hour English language development (ELD) block for educating English language learners (ELLs). Under this new language policy, ELL students are segregated from their English-speaking peers to receive a minimum of four hours of instruction in discrete language skills with no contextual or native language support. Furthermore, ELD is separate from content-area instruction, meaning that language and mathematics are taught as two separate entities. While educators and researchers have begun to examine the organizational structure of the 4-hour block curriculum and implications for student learning, there is much to be understood about the extent to which this policy impacts ELLs opportunities to learn mathematics. Using ethnographic methods, this dissertation documents the beliefs and practices of four Arizona teachers in an effort to understand the relationship between language policy and teacher beliefs and practice and how together they coalesce to form learning environments for their ELL students, particularly in mathematics. The findings suggest that the 4-hour block created disparities in opportunities to learn mathematics for students in one Arizona district, depending on teachers' beliefs and the manner in which the policy was enacted, which was, in part, influenced by the State, district, and school. The contrast in cases exemplified the ways in which policy, which was enacted differently in the various classes, restricted teachers' practices, and in some cases resulted in inequitable opportunities to learn mathematics for ELLs.
ContributorsLlamas-Flores, Silvia (Author) / Middleton, James (Thesis advisor) / Battey, Daniel (Committee member) / Sloane, Finbarr (Committee member) / Macswan, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2013