This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 18
Filtering by

Clear all filters

149711-Thumbnail Image.png
Description
An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an

An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely rifted plate margin, gravity surveys were conducted across the normal-fault-bounded basins within the gulf-margin array and, along with optically stimulated luminescence dating of offset surfaces, fault-slip rates were estimated and fault patterns across basins were assessed, providing insight into sedimentary basin evolution. Additionally, detailed geologic and geomorphic maps were constructed along two faults within the system, leading to a more complete understanding of the role of individual normal faults within a larger array. These faults slip at a low rate (0.1-1 mm/yr) and have relatively shallow hanging wall basins (~500-3000 m). Overall, the gulf-margin faults accommodate protracted, distributed deformation at a low rate and provide a minor contribution to overall rifting. Integrating figures with text can lead to greater science learning than when either medium is presented alone. Textbooks, composed of text and graphics, are a primary source of content in most geology classes. It is essential to understand how students approach learning from text and figures in textbook-style learning materials and how the arrangement of the text and figures influences their learning approach. Introductory geology students were eye tracked while learning from textbook-style materials composed of text and graphics. Eye fixation data showed that students spent less time examining the figure than the text, but the students who more frequently examined the figure tended to improve more from the pretest to the posttest. In general, students tended to examine the figure at natural breaks in the reading. Textbook-style materials should, therefore, be formatted to include a number of natural breaks so that learners can pause to inspect the figure without the risk of losing their place in the reading and to provide a chance to process the material in small chunks. Multimedia instructional materials should be designed to support the cognitive processes of the learner.
ContributorsBusch, Melanie M. D (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen (Thesis advisor) / Chi, Michelene (Committee member) / Semken, Steven (Committee member) / Tyburczy, James (Committee member) / Arizona State University (Publisher)
Created2011
150188-Thumbnail Image.png
Description
Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it

Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it is appropriate to integrate these data into Earth science educational materials. I seek to answer the following research question: "will using the LiDAR topography data instead of, or alongside, traditional visualizations and teaching methods enhance a student's ability to understand geologic concepts such as plate tectonics, the earthquake cycle, strike-slip faults, and geomorphology?" In order to answer this question, a ten-minute introductory video on LiDAR and its uses for the study of earthquakes entitled "LiDAR: Illuminating Earthquake Hazards" was produced. Additionally, LiDAR topography was integrated into the development of an undergraduate-level educational activity, the San Andreas fault (SAF) earthquake cycle activity, designed to teach introductory Earth science students about the earthquake cycle. Both the LiDAR video and the SAF activity were tested in undergraduate classrooms in order to determine their effectiveness. A pretest and posttest were administered to introductory geology lab students. The results of these tests show a notable increase in understanding LiDAR topography and its uses for studying earthquakes from pretest to posttest after watching the video on LiDAR, and a notable increase in understanding the earthquake cycle from pretest to posttest using the San Andreas Fault earthquake cycle exercise. These results suggest that the use of LiDAR topography within these educational tools is beneficial for students when learning about the earthquake cycle and earthquake hazards.
ContributorsRobinson, Sarah Elizabeth (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen J. (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
149701-Thumbnail Image.png
Description
Geoscience educators commonly teach geology by projecting a photograph in front of the class. Geologic photographs often contain animals, people, and inanimate objects that help convey the scale of features in the photograph. Although scale items seem innocuous to instructors and other experts, the presence of such items is distracting

Geoscience educators commonly teach geology by projecting a photograph in front of the class. Geologic photographs often contain animals, people, and inanimate objects that help convey the scale of features in the photograph. Although scale items seem innocuous to instructors and other experts, the presence of such items is distracting and has a profound effect on student learning behavior. To evaluate how students visually interact with distracting scale items in photographs and to determine if cueing or signaling is an effective means to direct students to pertinent information, students were eye tracked while looking at geologically-rich photographs. Eye-tracking data revealed that learners primarily looked at the center of an image, focused on faces of both humans and animals if they were present, and repeatedly returned to looking at the scale item (distractor) for the duration an image was displayed. The presence of a distractor caused learners to look at less of an image than when a distractor was not present. Learners who received signaling tended to look at the distractor less, look at the geology more, and surveyed more of the photograph than learners who did not receive signaling. The San Antonio area in the southern part of the Baja California Peninsula is host to hydrothermal gold deposits. A field study, including drill-core analysis and detailed geologic mapping, was conducted to determine the types of mineralization present, the types of structures present, and the relationship between the two. This investigation revealed that two phases of mineralization have occurred in the area; the first is hydrothermal deposition of gold associated with sulfide deposits and the second is oxidation of sulfides to hematite, goethite, and jarosite. Mineralization varies as a function of depth, whereas sulfides occurring at depth, while minerals indicative of oxidation are limited to shallow depths. A structural analysis revealed that the oldest structures in the study area include low-grade to medium-grade metamorphic foliation and ductile mylonitic shear zones overprinted by brittle-ductile mylonitic fabrics, which were later overprinted by brittle deformation. Both primary and secondary mineralization in the area is restricted to the later brittle features. Alteration-bearing structures have an average NNW strike consistent with northeast-southwest-directed extension, whereas unaltered structures have an average NNE strike consistent with more recent northwest-southeast-directed extension.
ContributorsCoyan, Joshua (Author) / Reynolds, Stephen (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Chi, Michelene (Committee member) / Piburn, Michael (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
151313-Thumbnail Image.png
Description
ABSTRACT The accretion of juvenile island-arc lithosphere by convergent tectonism during the Paleoproterozoic, in conjunction with felsic volcanism, resulted in the assembly, ductile to partial brittle deformation, uplift, and northwest-directed thrusting of rocks in the McDowell Mountains region and adjacent areas in the Mazatzal Orogenic belt. Utilizing lithologic characteristics and

ABSTRACT The accretion of juvenile island-arc lithosphere by convergent tectonism during the Paleoproterozoic, in conjunction with felsic volcanism, resulted in the assembly, ductile to partial brittle deformation, uplift, and northwest-directed thrusting of rocks in the McDowell Mountains region and adjacent areas in the Mazatzal Orogenic belt. Utilizing lithologic characteristics and petrographic analysis of the Proterozoic bedrock, a correlation to the Alder series was established, revising the stratigraphic sequences described by earlier works. The central fold belt, composed of an open, asymmetric syncline and an overturned, isoclinal anticline, is cut by an axial-plane parallel reactivated thrust zone that is intruded by a deformed Paleoproterozoic mafic dike. Finite strain analyses of fold geometries, shear fabrics, foliations, fold vergence, and strained clasts point to Paleoproterozoic northwest-directed thrusting associated with the Mazatzal orogen at approximately 1650 million years ago. Previous studies constrained the regional P-T conditions to at least the upper andalusite-kyanite boundary at peak metamorphic conditions, which ranged from 4-6 kilobars and 350-450⁰ Celsius, although the plasticity of deformation in a large anticlinal core suggests that this represents the low end of the P-T conditions. Subsequent to deformation, the rocks were intruded by several granitoid plutons, likely of Mesoproterozoic age (1300-1400 Ma). A detailed analysis of Proterozoic strain solidly places the structure of the McDowell Mountains within the confines of the Mazatzal Orogeny, pending any contradictory geochronological data.
ContributorsVance, Brad (Author) / Reynolds, Stephen J. (Thesis advisor) / Semken, Steven (Committee member) / Stump, Edmund (Committee member) / Arizona State University (Publisher)
Created2012
150923-Thumbnail Image.png
Description
New quadrangle-scale geologic mapping of the western part of the Date Creek Mountains (DCM) in west-central Arizona has revealed new insights into the geologic units, structures, and geologic history. Three U-Pb dates also provide surprising new information about the age and spatial relationships of the DCM as well as implications

New quadrangle-scale geologic mapping of the western part of the Date Creek Mountains (DCM) in west-central Arizona has revealed new insights into the geologic units, structures, and geologic history. Three U-Pb dates also provide surprising new information about the age and spatial relationships of the DCM as well as implications for the tectonics of the area. Paleoproterozoic metamorphic rocks in the central part of the DCM are presumably correlative with the Yavapai schist exposed in other parts of the Arizona Transition Zone. A granite formerly assigned to the Paleoproterozoic was subdivided into megacrystic and fine-grained units and hosts a set of previously undescribed subvertical felsic dikes. A new U-Pb date of the fine-grained phase has shown that unit to be Jurassic. The Mesoproterozoic Granite of Joshua Tree Parkway (Bryant, 1995), which also has fine-grained and megacrystic phases, displays a subhorizontal interunit contact suggestive of vertical stacking of individual intrusions. The age of another granitic pluton previously thought to be Laramide has been revised to Jurassic with the new U-Pb dates. Multiple noncontinuous sections of Tertiary volcanic rocks cover parts of the western end of the range with a combined thickness of at least 500 m. Tertiary basin fill abuts the northern and western edges of the range and perched remnants of the fill in the mountains suggest a former thickness of at least 100 m more than today. Quaternary alluvium is present in the drainages and covers the slopes south of the mountains. In addition to the felsic dikes, mafic and pegmatite dikes are also present. Two major structures are exposed in the study area: a roughly north-trending graben at the western end of the range and a probable normal fault which cuts northwest-southeast across the DCM and displays a zone of brittle deformation up to a few hundred meters wide. The orientation of the normal fault mirrors that of other similar faults in the area and is considered to be the result of regional tectonics activity, while the graben may owe its existence to movement on an underlying low-angle detachment fault.
ContributorsEddy, David (Author) / Reynolds, Stephen J. (Thesis advisor) / Arrowsmith, J R (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2012
190705-Thumbnail Image.png
Description
Among the deadliest of explosive volcanic hazards are pyroclastic surges – fast-moving, hot, dilute ground-hugging currents that overtop topography and leave complex deposits. Understanding the link between surge dynamics and their deposits is crucial for forecasting the impacts of future eruptions. To investigate surges, two sets of scaled laboratory experiments

Among the deadliest of explosive volcanic hazards are pyroclastic surges – fast-moving, hot, dilute ground-hugging currents that overtop topography and leave complex deposits. Understanding the link between surge dynamics and their deposits is crucial for forecasting the impacts of future eruptions. To investigate surges, two sets of scaled laboratory experiments were conducted. Set 1 released fluid pulses into less-dense ambient water (3-m flume). Pulse fluids were saline solutions with and without particles, and alcohol-water-particle mixtures. Non-dimensional numbers are calculated using both input parameters and measured outcomes. Inputs - fluid density, particle size and concentration, and volume of fluid released - were varied to explore a range of conditions. Key output parameters obtained by video analysis are flow thickness and propagation velocity. Propagation velocity, Re, and Ri increased with increasing pulse density, while Pn decreased. Lab Re values indicate fully turbulent flows, consistent with natural flows. Lab Ri closely matched nature and flow propagation was largely controlled by negative buoyancy, with entrainment playing a minor role. All flows began as subcritical (Fr<1). Alcohol-water-particle runs exhibited buoyancy reversals caused by particle sedimentation, characterized by gradual deceleration and late-stage formation of buoyant plumes. Saline runs maintained nearly constant velocities. In the second set of experiments, alcohol-water-particle mixtures were pulsed over particle bed. Various substrate topographies were tested (flat, mound-trough sequences, steps, wedges). Deposits thickened in troughs and thinned on peaks. Progressive climbing dunes formed on the lee side of the second peak of double peaks and peak-trough combinations, and in step-up topographies. Regressive climbing dunes formed on the stoss side of the first peak of peak-trough combinations and step-down topographies, and on the stoss side of mounds. Climb angles were 16 to 36°, consistent with those documented in pyroclastic surge deposits. The occurrence of both regressive and progressive climbing dunes suggests localized transitions between subcritical and supercritical flow. No cross-beds formed on flat substrates, suggesting that complex substrate topography is required for bedforms to occur in nature. A code benchmarking effort is underway in which targeted model runs will be compared to both sets of experiments in order to develop comprehensive hazards prediction tool.
ContributorsRagavan, Rupa (Author) / Clarke, Amanda (Thesis advisor) / Semken, Steven (Committee member) / Roggensack, Kurt (Committee member) / de'Michieli Vitturi, Mattia (Committee member) / Arizona State University (Publisher)
Created2023
189352-Thumbnail Image.png
Description
The Pennsylvanian and Permian sedimentary units of the American Southwest hold valuable records of a significant major tectonic event that formed the Ancestral Rocky Mountains and associated basins, such as the Paradox and Pedregosa Basins. These mountains exposed Precambrian crystalline rocks, contributing debris into the basins, forming predominantly reddish sedimentary

The Pennsylvanian and Permian sedimentary units of the American Southwest hold valuable records of a significant major tectonic event that formed the Ancestral Rocky Mountains and associated basins, such as the Paradox and Pedregosa Basins. These mountains exposed Precambrian crystalline rocks, contributing debris into the basins, forming predominantly reddish sedimentary sequences, such as the Supai Group of Grand Canyon, and the Abo Formation and Yeso Group of New Mexico. Previous studies have indicated that components of these sedimentary sequences were derived from regions outside the Southwest, such as the Appalachian Mountains of that time.Central New Mexico contains well-exposed sequences of Pennsylvanian and Permian sedimentary units with extensively studied biostratigraphy. Tight palaeontologic age constraints from these sequences provide an opportunity to examine variations over time of the relative contribution of sediment derived from the nearby Ancestral Rocky Mountains versus sediment of more distal origins. This study utilizes the laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) approach to U-Pb dating of detrital zircons found within the Pennsylvanian and Permian sequences of central New Mexico, to evaluate changes in potential source regions and sediment transport over time, and to contribute insights to the existing tectonic and sedimentary record of the area during the Pennsylvanian and Permian periods. The findings reveal the Pennsylvanian units were dominated by locally derived sediment, characterized by zircon ages ranging from 1400 to 1800 Ma, whereas Permian units record a substantial influx of distally derived grains with zircon ages ranging from approximately ~270 Ma to 1300 Ma. This indicates that the Ancestral Rockies were the dominant sedimentary sources during the Pennsylvanian but became subdued enough in the Permian to allow the sedimentary basins to capture exotic grains derived from distant regions in North America. These findings contribute valuable insights to the tectonic and sedimentary history of central New Mexico during the Pennsylvanian and Permian periods, shedding light on the evolution of the Ancestral Rockies and the influences of distant sediment sources on the region's depositional patterns.
ContributorsAigner, Michelle (Author) / Reynolds, Stephen J (Thesis advisor) / Hodges, Kip V (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2023
189383-Thumbnail Image.png
Description
This combined research provides in-depth insights into both the tectonic evolution of the Bradshaw Mountain region in Arizona and the effective use of Structure-from-Motion (SfM) photogrammetry in remote geological education. The first study focuses on deciphering paleostress fields in the Bradshaw Mountains region, which helps unravel Earth's past tectonic activities

This combined research provides in-depth insights into both the tectonic evolution of the Bradshaw Mountain region in Arizona and the effective use of Structure-from-Motion (SfM) photogrammetry in remote geological education. The first study focuses on deciphering paleostress fields in the Bradshaw Mountains region, which helps unravel Earth's past tectonic activities and lithospheric evolution. By examining fractures in plutonic stocks, ranging in age from 73 to 64 million years, crucial insights into the area's tectonic history were obtained. Fracture properties such as size, frequency, orientation, and location were diligently recorded. Further examination in a regional context revealed a complex stress regime during the Laramide orogeny, underpinned by diverse fracture and aplite dike orientations. The findings hint at potential influences of stress reversal during Laramide pluton emplacement and crystallization on regional principal stress, which deviated from previous regional tectonic studies. Factors like crustal dilation, local uplift, tensile stress cycle, and topographic stress could explain the lack of predicted mineralized orientations. The implications of these findings are vital for reconstructing Laramide tectonic and magmatic activities in the region, although further research is required to fully understand the causative mechanisms. The second study centers on the use of SfM photogrammetry in geological education, with a focus on remote learning environments. This involves creating 3D models of hand samples and outcrops with exceptional resolution for detail recognition. Detailed guidance on hardware and software specifications, image capture conditions, file management, and 3D model creation using Metashape is provided. The study emphasizes the dual-masking technique for optimum texture quality and the role of SketchFab in the analysis and viewing of the final product. This integration of SfM photogrammetry into geological education supplements traditional hands-on learning and enhances students' grasp of geological concepts. The technique provides an immersive, interactive experience, especially beneficial for students unable to physically access geological samples, and fosters critical thinking through a hands-on digital interface.
ContributorsHurst, Joseph Gregory (Author) / Reynolds, Stephen (Thesis advisor) / Semken, Steven (Committee member) / Johnson, Julia (Committee member) / Arizona State University (Publisher)
Created2023
189386-Thumbnail Image.png
Description
Space weathering of planetary surfaces is a complex process involving many mechanisms that work independently over different timescales. This research aims to address outstanding questions related to solar wind rim formation on space weathered regolith and tests a new hypothesis that dielectric breakdown plays an important role in the optical

Space weathering of planetary surfaces is a complex process involving many mechanisms that work independently over different timescales. This research aims to address outstanding questions related to solar wind rim formation on space weathered regolith and tests a new hypothesis that dielectric breakdown plays an important role in the optical maturation of lunar regolith. The purpose of this work is to highlight the limitations imposed by laboratory equipment to accurately simulate the solar wind’s effects on regolith and to provide physical context for the possible contributions of dielectric breakdown to space weathering. Terrestrial and lunar samples were experimentally irradiated and damage was characterized using electron microscopy techniques. Low-fluence proton irradiation produced differential weathering in a lunar mare basalt, with radiation damage on some phases being inconsistent with that found in the natural lunar environment. Dielectric breakdown of silicates revealed two electrical processes that produce characteristic surface and subsurface damage, in addition to amorphous rims. The results of this research highlight experimental parameters that if ignored, can significantly affect the results and interpretations of simulated solar wind weathering, and provides a framework for advancing space weathering research through experimental studies.
ContributorsShusterman, Morgan (Author) / Robinson, Mark S (Thesis advisor) / Sharp, Thomas G (Thesis advisor) / Hibbits, Charles (Committee member) / Bose, Maitrayee (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2023
168309-Thumbnail Image.png
Description
The goal of the first study was to characterize the Miocene arkosic conglomerate in the Goldfield Mountains to determine the paleocurrent direction and source of the cobbles. This conglomerate is tilted to the northeast and unconformably overlies Proterozoic basement. Imbrication measurements are scattered but suggest the direction of paleoflow was

The goal of the first study was to characterize the Miocene arkosic conglomerate in the Goldfield Mountains to determine the paleocurrent direction and source of the cobbles. This conglomerate is tilted to the northeast and unconformably overlies Proterozoic basement. Imbrication measurements are scattered but suggest the direction of paleoflow was toward the northwest and northeast, which suggests the cobbles were sourced from the southeast and southwest. The abundance of Dripping Spring Quartzite and the presence of Barnes Conglomerate in the cobbles, suggests an Apache Group source. In addition, south-southeast of the map area, there are several rock units composed of the same material as cobbles within the arkosic conglomerate. The arkosic conglomerate was likely deposited during onset of mid-Cenozoic extension, where the resulting highlands could provide a nearby source for the cobbles. This nearby source is interpreted to be south-southeast of the study area. A second study examined the effectiveness of course reform conducted on an introductory undergraduate course sequence. Questions of this study included: (1) How does the curriculum cater to a student population with diverse goals? (2) How do reformed courses add educational value as perceived by the student? (3) How does the redesigned curriculum and the instructional strategies, as implemented, address the goals of the reform? The curriculum addressed the goals of the reform by (1) creating more opportunities for students to gain the skills relevant to their future goals, (2) having students utilize big data to make observations, interpretations, and predictions, (3) engaging students in scientific collaboration through group work and discussion, (4) giving students the opportunity to utilize computer programs that apply across various subjects and fields (i.e. Excel, MS Word, ArcGIS), and (5) requiring students to conduct original research to solve a problem and present their results orally and in written form. These redesign efforts were successful in meeting the objectives, and majority of the student participants reported one or more of the reformed experiences were valuable to their education and future goals. An understanding of teaching methods and educational values held by undergraduate students within the School of Earth and Space Exploration can be adapted and applied across subjects.
ContributorsAccetta, Danielle (Author) / Reynolds, Stephen J (Thesis advisor) / Johnson, Julia K (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2021