This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 16
Filtering by

Clear all filters

151429-Thumbnail Image.png
Description
A central concept of combinatorics is partitioning structures with given constraints. Partitions of on-line posets and on-line graphs, which are dynamic versions of the more familiar static structures posets and graphs, are examined. In the on-line setting, vertices are continually added to a poset or graph while a chain partition

A central concept of combinatorics is partitioning structures with given constraints. Partitions of on-line posets and on-line graphs, which are dynamic versions of the more familiar static structures posets and graphs, are examined. In the on-line setting, vertices are continually added to a poset or graph while a chain partition or coloring (respectively) is maintained. %The optima of the static cases cannot be achieved in the on-line setting. Both upper and lower bounds for the optimum of the number of chains needed to partition a width $w$ on-line poset exist. Kierstead's upper bound of $\frac{5^w-1}{4}$ was improved to $w^{14 \lg w}$ by Bosek and Krawczyk. This is improved to $w^{3+6.5 \lg w}$ by employing the First-Fit algorithm on a family of restricted posets (expanding on the work of Bosek and Krawczyk) . Namely, the family of ladder-free posets where the $m$-ladder is the transitive closure of the union of two incomparable chains $x_1\le\dots\le x_m$, $y_1\le\dots\le y_m$ and the set of comparabilities $\{x_1\le y_1,\dots, x_m\le y_m\}$. No upper bound on the number of colors needed to color a general on-line graph exists. To lay this fact plain, the performance of on-line coloring of trees is shown to be particularly problematic. There are trees that require $n$ colors to color on-line for any positive integer $n$. Furthermore, there are trees that usually require many colors to color on-line even if they are presented without any particular strategy. For restricted families of graphs, upper and lower bounds for the optimum number of colors needed to maintain an on-line coloring exist. In particular, circular arc graphs can be colored on-line using less than 8 times the optimum number from the static case. This follows from the work of Pemmaraju, Raman, and Varadarajan in on-line coloring of interval graphs.
ContributorsSmith, Matthew Earl (Author) / Kierstead, Henry A (Thesis advisor) / Colbourn, Charles (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
152048-Thumbnail Image.png
Description
A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or

A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or an $H$-factor. A goal of this study is to extend theorems on sufficient minimum degree conditions for perfect tilings in graphs to directed graphs. Corrádi and Hajnal proved that every graph $G$ on $3k$ vertices with minimum degree $delta(G)ge2k$ has a $K_3$-factor, where $K_s$ is the complete graph on $s$ vertices. The following theorem extends this result to directed graphs: If $D$ is a directed graph on $3k$ vertices with minimum total degree $delta(D)ge4k-1$ then $D$ can be partitioned into $k$ parts each of size $3$ so that all of parts contain a transitive triangle and $k-1$ of the parts also contain a cyclic triangle. The total degree of a vertex $v$ is the sum of $d^-(v)$ the in-degree and $d^+(v)$ the out-degree of $v$. Note that both orientations of $C_3$ are considered: the transitive triangle and the cyclic triangle. The theorem is best possible in that there are digraphs that meet the minimum degree requirement but have no cyclic triangle factor. The possibility of added a connectivity requirement to ensure a cycle triangle factor is also explored. Hajnal and Szemerédi proved that if $G$ is a graph on $sk$ vertices and $delta(G)ge(s-1)k$ then $G$ contains a $K_s$-factor. As a possible extension of this celebrated theorem to directed graphs it is proved that if $D$ is a directed graph on $sk$ vertices with $delta(D)ge2(s-1)k-1$ then $D$ contains $k$ disjoint transitive tournaments on $s$ vertices. We also discuss tiling directed graph with other tournaments. This study also explores minimum total degree conditions for perfect directed cycle tilings and sufficient semi-degree conditions for a directed graph to contain an anti-directed Hamilton cycle. The semi-degree of a vertex $v$ is $min{d^+(v), d^-(v)}$ and an anti-directed Hamilton cycle is a spanning cycle in which no pair of consecutive edges form a directed path.
ContributorsMolla, Theodore (Author) / Kierstead, Henry A (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Spielberg, Jack (Committee member) / Arizona State University (Publisher)
Created2013
151578-Thumbnail Image.png
Description
Every graph can be colored with one more color than its maximum degree. A well-known theorem of Brooks gives the precise conditions under which a graph can be colored with maximum degree colors. It is natural to ask for the required conditions on a graph to color with one less

Every graph can be colored with one more color than its maximum degree. A well-known theorem of Brooks gives the precise conditions under which a graph can be colored with maximum degree colors. It is natural to ask for the required conditions on a graph to color with one less color than the maximum degree; in 1977 Borodin and Kostochka conjectured a solution for graphs with maximum degree at least 9: as long as the graph doesn't contain a maximum-degree-sized clique, it can be colored with one fewer than the maximum degree colors. This study attacks the conjecture on multiple fronts. The first technique is an extension of a vertex shuffling procedure of Catlin and is used to prove the conjecture for graphs with edgeless high vertex subgraphs. This general approach also bears more theoretical fruit. The second technique is an extension of a method Kostochka used to reduce the Borodin-Kostochka conjecture to the maximum degree 9 case. Results on the existence of independent transversals are used to find an independent set intersecting every maximum clique in a graph. The third technique uses list coloring results to exclude induced subgraphs in a counterexample to the conjecture. The classification of such excludable graphs that decompose as the join of two graphs is the backbone of many of the results presented here. The fourth technique uses the structure theorem for quasi-line graphs of Chudnovsky and Seymour in concert with the third technique to prove the Borodin-Kostochka conjecture for claw-free graphs. The fifth technique adds edges to proper induced subgraphs of a minimum counterexample to gain control over the colorings produced by minimality. The sixth technique adapts a recoloring technique originally developed for strong coloring by Haxell and by Aharoni, Berger and Ziv to general coloring. Using this recoloring technique, the Borodin-Kostochka conjectured is proved for graphs where every vertex is in a large clique. The final technique is naive probabilistic coloring as employed by Reed in the proof of the Borodin-Kostochka conjecture for large maximum degree. The technique is adapted to prove the Borodin-Kostochka conjecture for list coloring for large maximum degree.
ContributorsRabern, Landon (Author) / Kierstead, Henry (Thesis advisor) / Colbourn, Charles (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Arizona State University (Publisher)
Created2013
151231-Thumbnail Image.png
Description
Gray codes are perhaps the best known structures for listing sequences of combinatorial objects, such as binary strings. Simply defined as a minimal change listing, Gray codes vary greatly both in structure and in the types of objects that they list. More specific types of Gray codes are universal cycles

Gray codes are perhaps the best known structures for listing sequences of combinatorial objects, such as binary strings. Simply defined as a minimal change listing, Gray codes vary greatly both in structure and in the types of objects that they list. More specific types of Gray codes are universal cycles and overlap sequences. Universal cycles are Gray codes on a set of strings of length n in which the first n-1 letters of one object are the same as the last n-1 letters of its predecessor in the listing. Overlap sequences allow this overlap to vary between 1 and n-1. Some of our main contributions to the areas of Gray codes and universal cycles include a new Gray code algorithm for fixed weight m-ary words, and results on the existence of universal cycles for weak orders on [n]. Overlap cycles are a relatively new structure with very few published results. We prove the existence of s-overlap cycles for k-permutations of [n], which has been an open research problem for several years, as well as constructing 1- overlap cycles for Steiner triple and quadruple systems of every order. Also included are various other results of a similar nature covering other structures such as binary strings, m-ary strings, subsets, permutations, weak orders, partitions, and designs. These listing structures lend themselves readily to some classes of combinatorial objects, such as binary n-tuples and m-ary n-tuples. Others require more work to find an appropriate structure, such as k-subsets of an n-set, weak orders, and designs. Still more require a modification in the representation of the objects to fit these structures, such as partitions. Determining when and how we can fit these sets of objects into our three listing structures is the focus of this dissertation.
ContributorsHoran, Victoria E (Author) / Hurlbert, Glenn H. (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Colbourn, Charles (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
149599-Thumbnail Image.png
Description
The primary focus of this dissertation lies in extremal combinatorics, in particular intersection theorems in finite set theory. A seminal result in the area is the theorem of Erdos, Ko and Rado which finds the upper bound on the size of an intersecting family of subsets of an n-element set

The primary focus of this dissertation lies in extremal combinatorics, in particular intersection theorems in finite set theory. A seminal result in the area is the theorem of Erdos, Ko and Rado which finds the upper bound on the size of an intersecting family of subsets of an n-element set and characterizes the structure of families which attain this upper bound. A major portion of this dissertation focuses on a recent generalization of the Erdos--Ko--Rado theorem which considers intersecting families of independent sets in graphs. An intersection theorem is proved for a large class of graphs, namely chordal graphs which satisfy an additional condition and similar problems are considered for trees, bipartite graphs and other special classes. A similar extension is also formulated for cross-intersecting families and results are proved for chordal graphs and cycles. A well-known generalization of the EKR theorem for k-wise intersecting families due to Frankl is also considered. A stability version of Frankl's theorem is proved, which provides additional structural information about k-wise intersecting families which have size close to the maximum upper bound. A graph-theoretic generalization of Frankl's theorem is also formulated and proved for perfect matching graphs. Finally, a long-standing conjecture of Chvatal regarding structure of maximum intersecting families in hereditary systems is considered. An intersection theorem is proved for hereditary families which have rank 3 using a powerful tool of Erdos and Rado which is called the Sunflower Lemma.
ContributorsKamat, Vikram M (Author) / Hurlbert, Glenn (Thesis advisor) / Colbourn, Charles (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Kierstead, Henry (Committee member) / Arizona State University (Publisher)
Created2011
149332-Thumbnail Image.png
Description
Graph coloring is about allocating resources that can be shared except where there are certain pairwise conflicts between recipients. The simplest coloring algorithm that attempts to conserve resources is called first fit. Interval graphs are used in models for scheduling (in computer science and operations research) and in biochemistry for

Graph coloring is about allocating resources that can be shared except where there are certain pairwise conflicts between recipients. The simplest coloring algorithm that attempts to conserve resources is called first fit. Interval graphs are used in models for scheduling (in computer science and operations research) and in biochemistry for one-dimensional molecules such as genetic material. It is not known precisely how much waste in the worst case is due to the first-fit algorithm for coloring interval graphs. However, after decades of research the range is narrow. Kierstead proved that the performance ratio R is at most 40. Pemmaraju, Raman, and Varadarajan proved that R is at most 10. This can be improved to 8. Witsenhausen, and independently Chrobak and Slusarek, proved that R is at least 4. Slusarek improved this to 4.45. Kierstead and Trotter extended the method of Chrobak and Slusarek to one good for a lower bound of 4.99999 or so. The method relies on number sequences with a certain property of order. It is shown here that each sequence considered in the construction satisfies a linear recurrence; that R is at least 5; that the Fibonacci sequence is in some sense minimally useless for the construction; and that the Fibonacci sequence is a point of accumulation in some space for the useful sequences of the construction. Limitations of all earlier constructions are revealed.
ContributorsSmith, David A. (Author) / Kierstead, Henry A. (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Gelb, Anne (Committee member) / Hurlbert, Glenn H. (Committee member) / Kadell, Kevin W. J. (Committee member) / Arizona State University (Publisher)
Created2010
168389-Thumbnail Image.png
Description
A storage system requiring file redundancy and on-line repairability can be represented as a Steiner system, a combinatorial design with the property that every $t$-subset of its points occurs in exactly one of its blocks. Under this representation, files are the points and storage units are the blocks of the

A storage system requiring file redundancy and on-line repairability can be represented as a Steiner system, a combinatorial design with the property that every $t$-subset of its points occurs in exactly one of its blocks. Under this representation, files are the points and storage units are the blocks of the Steiner system, or vice-versa. Often, the popularities of the files of such storage systems run the gamut, with some files receiving hardly any attention, and others receiving most of it. For such systems, minimizing the difference in the collective popularity between any two storage units is nontrivial; this is the access balancing problem. With regard to the representative Steiner system, the access balancing problem in its simplest form amounts to constructing either a point or block labelling: an assignment of a set of integer labels (popularity ranks) to the Steiner system's point set or block set, respectively, requiring of the former assignment that the sums of the labelled points of any two blocks differ as little as possible and of the latter that the sums of the labels assigned to the containing blocks of any two distinct points differ as little as possible. The central aim of this dissertation is to supply point and block labellings for Steiner systems of block size greater than three, for which up to this point no attempt has been made. Four major results are given in this connection. First, motivated by the close connection between the size of the independent sets of a Steiner system and the quality of its labellings, a Steiner triple system of any admissible order is constructed with a pair of disjoint independent sets of maximum cardinality. Second, the spectrum of resolvable Bose triple systems is determined in order to label some Steiner 2-designs with block size four. Third, several kinds of independent sets are used to point-label Steiner 2-designs with block size four. Finally, optimal and close to optimal block labellings are given for an infinite class of 1-rotational resolvable Steiner 2-designs with arbitrarily large block size by exploiting their underlying group-theoretic properties.
ContributorsLusi, Dylan (Author) / Colbourn, Charles J (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fainekos, Georgios (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2021
155047-Thumbnail Image.png
Description
Modern software and hardware systems are composed of a large number of components. Often different components of a system interact with each other in unforeseen and undesired ways to cause failures. Covering arrays are a useful mathematical tool for testing all possible t-way interactions among the components of a system.

Modern software and hardware systems are composed of a large number of components. Often different components of a system interact with each other in unforeseen and undesired ways to cause failures. Covering arrays are a useful mathematical tool for testing all possible t-way interactions among the components of a system.

The two major issues concerning covering arrays are explicit construction of a covering array, and exact or approximate determination of the covering array number---the minimum size of a covering array. Although these problems have been investigated extensively for the last couple of decades, in this thesis we present significant improvements on both of these questions using tools from the probabilistic method and randomized algorithms.

First, a series of improvements is developed on the previously known upper bounds on covering array numbers. An estimate for the discrete Stein-Lovász-Johnson bound is derived and the Stein- Lovász -Johnson bound is improved upon using an alteration strategy. Then group actions on the set of symbols are explored to establish two asymptotic upper bounds on covering array numbers that are tighter than any of the presently known bounds.

Second, an algorithmic paradigm, called the two-stage framework, is introduced for covering array construction. A number of concrete algorithms from this framework are analyzed, and it is shown that they outperform current methods in the range of parameter values that are of practical relevance. In some cases, a reduction in the number of tests by more than 50% is achieved.

Third, the Lovász local lemma is applied on covering perfect hash families to obtain an upper bound on covering array numbers that is tightest of all known bounds. This bound leads to a Moser-Tardos type algorithm that employs linear algebraic computation over finite fields to construct covering arrays. In some cases, this algorithm outperforms currently used methods by more than an 80% margin.

Finally, partial covering arrays are introduced to investigate a few practically relevant relaxations of the covering requirement. Using probabilistic methods, bounds are obtained on partial covering arrays that are significantly smaller than for covering arrays. Also, randomized algorithms are provided that construct such arrays in expected polynomial time.
ContributorsSarakāra, Kauśika (Author) / Colbourn, Charles J. (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Richa, Andréa W. (Committee member) / Syrotiuk, Violet R. (Committee member) / Arizona State University (Publisher)
Created2016
155093-Thumbnail Image.png
Description
The Tamari lattice T(n) was originally defined on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Since then it has been studied in various areas of mathematics including cluster algebras, discrete geometry, algebraic combinatorics, and Catalan theory.

The Tamari lattice T(n) was originally defined on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Since then it has been studied in various areas of mathematics including cluster algebras, discrete geometry, algebraic combinatorics, and Catalan theory. Although in several related lattices the number of maximal chains is known, the enumeration of these chains in Tamari lattices is still an open problem.

This dissertation defines a partially-ordered set on equivalence classes of certain saturated chains of T(n) called the Tamari Block poset, TB(lambda). It further proves TB(lambda) is a graded lattice. It then shows for lambda = (n-1,...,2,1) TB(lambda) is anti-isomorphic to the Higher Stasheff-Tamari orders in dimension 3 on n+2 elements. It also investigates enumeration questions involving TB(lambda), and proves other structural results along the way.
ContributorsTreat, Kevin (Author) / Fishel, Susanna (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Jones, John (Committee member) / Childress, Nancy (Committee member) / Colbourn, Charles (Committee member) / Arizona State University (Publisher)
Created2016
154926-Thumbnail Image.png
Description
The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around 1952. He defined the n-th Tamari lattice T(n) on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Despite their interesting aspects and the

The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around 1952. He defined the n-th Tamari lattice T(n) on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Despite their interesting aspects and the attention they have received, a formula for the number of maximal chains in the Tamari lattices is still unknown. The purpose of this thesis is to convey my results on progress toward the solution of this problem and to discuss future work.

A few years ago, Bergeron and Préville-Ratelle generalized the Tamari lattices to the m-Tamari lattices. The original Tamari lattices T(n) are the case m=1. I establish a bijection between maximum length chains in the m-Tamari lattices and standard m-shifted Young tableaux. Using Thrall’s formula, I thus derive the formula for the number of maximum length chains in T(n).

For each i greater or equal to -1 and for all n greater or equal to 1, I define C(i,n) to be the set of maximal chains of length n+i in T(n). I establish several properties of maximal chains (treated as tableaux) and identify a particularly special property: each maximal chain may or may not possess a plus-full-set. I show, surprisingly, that for all n greater or equal to 2i+4, each member of C(i,n) contains a plus-full-set. Utilizing this fact and a collection of maps, I obtain a recursion for the number of elements in C(i,n) and an explicit formula based on predetermined initial values. The formula is a polynomial in n of degree 3i+3. For example, the number of maximal chains of length n in T(n) is n choose 3.

I discuss current work and future plans involving certain equivalence classes of maximal chains in the Tamari lattices. If a maximal chain may be obtained from another by swapping a pair of consecutive edges with another pair in the Hasse diagram, the two maximal chains are said to differ by a square move. Two maximal chains are said to be in the same equivalence class if one may be obtained from the other by making a set of square moves.
ContributorsNelson, Luke (Author) / Fishel, Susanna (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Jones, John (Committee member) / Kierstead, Henry (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2016