This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

149672-Thumbnail Image.png
Description
The release of organophosphorus compounds (OPs) and subsequent exposure to these compounds is of concern to humans and the environment. The goal of this work was to control the concentrations of gaseous OPs through interaction with sorbent oxides. Experimental and computational methods were employed to assess the interactions

The release of organophosphorus compounds (OPs) and subsequent exposure to these compounds is of concern to humans and the environment. The goal of this work was to control the concentrations of gaseous OPs through interaction with sorbent oxides. Experimental and computational methods were employed to assess the interactions of dimethyl phosphite (DMHP), dimethyl methylphosphonate (DMMP), dimethyl ethylphosphonate (DMEP), diethyl ethylphosphonate (DEEP), and triethyl phosphate (TEP) with amorphous silica (a-silica), ã-alumina, and monoclinic zirconia (m-zirconia) for applications in air pollution control. Interactions of the selected OPs with a-silica were chosen as a baseline to determine the applicability of the computational predictions. Based on the a-silica results, computational methods were deemed valid for predicting the trends among materials with comparable interactions (e.g. -OH functionality of a-silica interacting with the phosphonyl O atoms of the OPs). Computational evaluations of the interactions with the OPs were extended to the oxide material, m-zirconia, and compared with the results for ã-alumina. It was hypothesized that m-zirconia had the potential to provide for the effective sorption of OPs in a manner superior to that of the a-silica and the ã-alumina surfaces due to the surface charges of the zirconium Lewis acid sites when coordinated in the oxidized form. Based on the computational study, the predicted heats of adsorption for the selected OPs onto m-zirconia were more favorable than those that were predicted for ã-alumina and a-silica. Experimental studies were carried out to confirm these computational results. M-zirconia nanoparticles were synthesized to determine if the materials could be utilized for the adsorption of the selected OPs. M-zirconia was shown to adsorb the OPs, and the heats of adsorption were stronger than those determined for commercial samples of a-silica. However, water interfered with the adsorption of the OPs onto m-zirconia, thus leading to heats of adsorption that were much weaker than those predicted computationally. Nevertheless, this work provides a first investigation of m-zirconia as a viable sorbent material for the ambient control of the selected gaseous OPs. Additionally, this work represents the first comparative study between computational predictions and experimental determination of thermodynamic properties for the interactions of the selected OPs and oxide surfaces.
ContributorsSiu, Eulalia Yuen-Yi (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica S (Committee member) / Hristovski, Kiril (Committee member) / Nielsen, David R (Committee member) / Pfeffer, Robert (Committee member) / Arizona State University (Publisher)
Created2011
151268-Thumbnail Image.png
Description
The mitigation and conversion of carbon dioxide (CO2) to more useful carbon chemicals is a research topic that is at the forefront of current engineering and sustainability applications. Direct photocatalytic reduction of CO2 with water (H2O) vapor to C1-C4 hydrocarbons has significant potential in setting substantial groundwork for meeting the

The mitigation and conversion of carbon dioxide (CO2) to more useful carbon chemicals is a research topic that is at the forefront of current engineering and sustainability applications. Direct photocatalytic reduction of CO2 with water (H2O) vapor to C1-C4 hydrocarbons has significant potential in setting substantial groundwork for meeting the increasing energy demands with minimal environmental impact. Previous studies indicate that titanium dioxide (TiO2) containing materials serve as the best photocatalyst for CO2 and H2O conversion to higher-value products. An understanding of the CO2-H2O reaction mechanism over TiO2 materials allows one to increase the yield of certain products such as carbon monoxide (CO) and methane (CH4). The basis of the work discussed in this thesis, investigates the interaction of small molecules (CO, CH4,H2O) over the least studied TiO2 polymorph - brookite. Using the Gaussian03 computational chemistry software package, density functional theory (DFT) calculations were performed to investigate the adsorption behavior of CO, H2O, and CH4 gases on perfect and oxygen-deficient brookite TiO2 (210) and anatase TiO2 (101) surfaces. The most geometrically and energetically favorable configurations of these molecules on the TiO2 surfaces were computed using the B3LYP/6-31+G(2df,p) functional/basis set. Calculations from this theoretical study indicate all three molecules adsorb more favorably onto the brookite TiO2 (210) surface. Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) was used to investigate the adsorption and desorption behavior of H2O and CH4 on Evonik P25 TiO2. Results from the experimental studies and theoretical work will serve as a significant basis for reaction prediction on brookite TiO2 surfaces.
ContributorsRollins, Selisa F (Author) / Andino, Jean M (Thesis advisor) / Dai, Lenore L (Committee member) / Forzani, Erica S (Committee member) / Arizona State University (Publisher)
Created2012
154279-Thumbnail Image.png
Description
A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature

A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors.

Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors.

Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs between low temperature and low stress (less than -70 MPa compressive) and device performance. Devices with a dark current of less than 1.0 pA/mm2 and a quantum efficiency of 68% have been demonstrated. Alternative processing techniques, such as pixelating the PIN diode and using organic photodiodes have also been explored for applications where extreme flexibility is desired.
ContributorsMarrs, Michael (Author) / Raupp, Gregory B (Thesis advisor) / Allee, David R. (Committee member) / Dai, Lenore L (Committee member) / Forzani, Erica S (Committee member) / Bawolek, Edward J (Committee member) / Arizona State University (Publisher)
Created2016
153096-Thumbnail Image.png
Description
Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health concerns. This dissertation explores the development of decision algorithms for

Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health concerns. This dissertation explores the development of decision algorithms for adaptive sequential behavioral interventions using dynamical systems modeling, control engineering principles and formal optimization methods. A novel gestational weight gain (GWG) intervention involving multiple intervention components and featuring a pre-defined, clinically relevant set of sequence rules serves as an excellent example of a sequential behavioral intervention; it is examined in detail in this research.

 

A comprehensive dynamical systems model for the GWG behavioral interventions is developed, which demonstrates how to integrate a mechanistic energy balance model with dynamical formulations of behavioral models, such as the Theory of Planned Behavior and self-regulation. Self-regulation is further improved with different advanced controller formulations. These model-based controller approaches enable the user to have significant flexibility in describing a participant's self-regulatory behavior through the tuning of controller adjustable parameters. The dynamic simulation model demonstrates proof of concept for how self-regulation and adaptive interventions influence GWG, how intra-individual and inter-individual variability play a critical role in determining intervention outcomes, and the evaluation of decision rules.

 

Furthermore, a novel intervention decision paradigm using Hybrid Model Predictive Control framework is developed to generate sequential decision policies in the closed-loop. Clinical considerations are systematically taken into account through a user-specified dosage sequence table corresponding to the sequence rules, constraints enforcing the adjustment of one input at a time, and a switching time strategy accounting for the difference in frequency between intervention decision points and sampling intervals. Simulation studies illustrate the potential usefulness of the intervention framework.

The final part of the dissertation presents a model scheduling strategy relying on gain-scheduling to address nonlinearities in the model, and a cascade filter design for dual-rate control system is introduced to address scenarios with variable sampling rates. These extensions are important for addressing real-life scenarios in the GWG intervention.
ContributorsDong, Yuwen (Author) / Rivera, Daniel E (Thesis advisor) / Dai, Lenore (Committee member) / Forzani, Erica (Committee member) / Rege, Kaushal (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2014