This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

171908-Thumbnail Image.png
Description
This thesis presents the development of idiographic models (i.e., single subject or N = 1) of walking behavior as a means of facilitating the design of control systems to optimize mobile health (mHealth) interventions for sedentary adults. Model-on-Demand (MoD), an adaptive modeling technique, is demonstrated as an ideal method for

This thesis presents the development of idiographic models (i.e., single subject or N = 1) of walking behavior as a means of facilitating the design of control systems to optimize mobile health (mHealth) interventions for sedentary adults. Model-on-Demand (MoD), an adaptive modeling technique, is demonstrated as an ideal method for modeling nonlinear systems with noise on a simulated continuously stirred tank reactor (CSTR). Comparing MoD to AutoRegressive with eXogenous input (ARX) estimation, MoD outperforms ARX in terms of addressing both nonlinearity and noise in the CSTR system. With the CSTR system as an initial proof of concept, MoD is then used to model individual walking behavior using intervention data from participants of HeartSteps, a walking intervention that studies the effect of within-day suggestions. Given the number of possible measured features from which to design the MoD models, as well as the number of model parameters that influence the model’s performance, optimizing MoD models through exhaustive search is infeasible. Consequently, a discrete implementation of simultaneous perturbation stochastic approximation (DSPSA) is shown to be an efficient algorithm to find optimal models of walking behavior. Combining MoD with DSPSA, models of walking behavior were developed using participant data from Just Walk, a day-to-day walking intervention; MoD outperformed ARX models on both estimation and validation data. DSPSA was also applied to ARX modeling, highlighting the use of DSPSA to not only search over model parameters and features but also data partitioning, as DSPSA was used to evaluate models under various combinations of estimation and validation data from a single participant’s walking data. Results of this thesis point to ARX with DSPSA as a routine means for dynamic model estimation in large-scale behavioral intervention settings.
ContributorsKha, Rachael T (Author) / Rivera, Daniel E (Thesis advisor) / Deng, Shuguang (Committee member) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
193425-Thumbnail Image.png
Description
Cyclical chemical looping involves the thermal reduction of metal oxide to release O2 at high temperatures, followed by its oxidation using O-containing molecules like O2, H2O, or CO2. This process is a promising method for solar thermochemical water splitting (STCH), oxygen separation, and thermochemical energy storage (TCES). The efficiency and

Cyclical chemical looping involves the thermal reduction of metal oxide to release O2 at high temperatures, followed by its oxidation using O-containing molecules like O2, H2O, or CO2. This process is a promising method for solar thermochemical water splitting (STCH), oxygen separation, and thermochemical energy storage (TCES). The efficiency and economic viability of this process hinge on the thermodynamics of metal oxide reduction. This dissertation presents innovative methods to enhance the performance of these processes, with a specific focus on STCH and TCES by advancing thermodynamic characterization and screening of potential metal oxides, thereby reducing H2 costs.A novel CALPHAD approach, the CrossFit Compound Energy Formalism (CEF), integrates theoretical (density functional theory) and experimental (thermogravimetric) data to develop thermodynamic models for desired materials. The CrossFit-CEF was applied to BaxSr1-xFeO3-δ identifying matching thermodynamics and off-stoichiometric values to literature (~100-180 kJ/mol O2 reduction enthalpies across the BaxSr1-xFeO3-δ compositional range). Comparisons with the traditional van ‘t Hoff thermodynamic extraction technique reveal that the CrossFit-CEF method significantly outperforms conventional methods. For instance, the CEF method was employed to extract thermodynamic data for CaFexMn1-xO3-δ and identify optimal TCES CaFexMn1-xO3-δ compositions. The CrossFit-CEF method found the same thermodynamic trends on less than half the data utilized in a van ‘t Hoff approach and determined that the optimal CaFexMn1-xO3-δ composition had the minimal Fe concentration synthesized (x=0.625), achieving ~60 kJ/mol TCES. Bayesian Inference was employed was employed to expedite data collection. When combined with the CrossFit-CEF method, Bayesian Inference assesses the likelihood that the current model accurately describes the data, providing confidence intervals for the model. This approach reduces the amount of data needed for accurate thermodynamic modeling by 50%. Finally, the CrossFit-CEF and Bayesian methods are integrated into a system-level STCH model to optimize and accelerate materials design for specific plant operating conditions. Overall, this dissertation introduces methods that yield more accurate thermodynamic models with reduced data requirements. The time saved in data collection enables screening of more materials, expediting material identification and optimization. The materials identified through these techniques are expected to enhance chemical looping cycles, leading to increased H2 production efficiency and reduced costs.
ContributorsWilson, Steven A (Author) / Muhich, Christopher L (Thesis advisor) / Rivera, Daniel E (Committee member) / Stechel, Ellen B (Committee member) / Lin, Jerry (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2024
155115-Thumbnail Image.png
Description
The lack of healthy behaviors - such as physical activity and balanced diet - in

modern society is responsible for a large number of diseases and high mortality rates in

the world. Adaptive behavioral interventions have been suggested as a way to promote

sustained behavioral changes to address these issues. These adaptive interventions

can

The lack of healthy behaviors - such as physical activity and balanced diet - in

modern society is responsible for a large number of diseases and high mortality rates in

the world. Adaptive behavioral interventions have been suggested as a way to promote

sustained behavioral changes to address these issues. These adaptive interventions

can be modeled as closed-loop control systems, and thus applying control systems

engineering and system identification principles to behavioral settings might provide

a novel way of improving the quality of such interventions.

Good understanding of the dynamic processes involved in behavioral experiments

is a fundamental step in order to design such interventions with control systems ideas.

In the present work, two different behavioral experiments were analyzed under the

light of system identification principles and modelled as dynamic systems.

In the first study, data gathered over the course of four days served as the basis for

ARX modeling of the relationship between psychological constructs (negative affect

and self-efficacy) and the intensity of physical activity. The identified models suggest

that this behavioral process happens with self-regulation, and that the relationship

between negative affect and self-efficacy is represented by a second order underdamped

system with negative gain, while the relationship between self-efficacy and physical

activity level is an overdamped second order system with positive gain.

In the second study, which consisted of single-bouts of intense physical activity,

the relation between a more complex set of behavioral variables was identified as a

semi-physical model, with a theoretical set of system equations derived from behavioral

theory. With a prescribed set of physical activity intensities, it was found that less fit

participants were able to get higher increases in affective state, and that self-regulation

processes are also involved in the system.
ContributorsSeixas, Gustavo Mesel Lobo (Author) / Rivera, Daniel E (Thesis advisor) / Peet, Matthew M (Committee member) / Alford, Terry L. (Committee member) / Arizona State University (Publisher)
Created2016
153096-Thumbnail Image.png
Description
Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health concerns. This dissertation explores the development of decision algorithms for

Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health concerns. This dissertation explores the development of decision algorithms for adaptive sequential behavioral interventions using dynamical systems modeling, control engineering principles and formal optimization methods. A novel gestational weight gain (GWG) intervention involving multiple intervention components and featuring a pre-defined, clinically relevant set of sequence rules serves as an excellent example of a sequential behavioral intervention; it is examined in detail in this research.

 

A comprehensive dynamical systems model for the GWG behavioral interventions is developed, which demonstrates how to integrate a mechanistic energy balance model with dynamical formulations of behavioral models, such as the Theory of Planned Behavior and self-regulation. Self-regulation is further improved with different advanced controller formulations. These model-based controller approaches enable the user to have significant flexibility in describing a participant's self-regulatory behavior through the tuning of controller adjustable parameters. The dynamic simulation model demonstrates proof of concept for how self-regulation and adaptive interventions influence GWG, how intra-individual and inter-individual variability play a critical role in determining intervention outcomes, and the evaluation of decision rules.

 

Furthermore, a novel intervention decision paradigm using Hybrid Model Predictive Control framework is developed to generate sequential decision policies in the closed-loop. Clinical considerations are systematically taken into account through a user-specified dosage sequence table corresponding to the sequence rules, constraints enforcing the adjustment of one input at a time, and a switching time strategy accounting for the difference in frequency between intervention decision points and sampling intervals. Simulation studies illustrate the potential usefulness of the intervention framework.

The final part of the dissertation presents a model scheduling strategy relying on gain-scheduling to address nonlinearities in the model, and a cascade filter design for dual-rate control system is introduced to address scenarios with variable sampling rates. These extensions are important for addressing real-life scenarios in the GWG intervention.
ContributorsDong, Yuwen (Author) / Rivera, Daniel E (Thesis advisor) / Dai, Lenore (Committee member) / Forzani, Erica (Committee member) / Rege, Kaushal (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2014