This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

152402-Thumbnail Image.png
Description
This work demonstrated a novel microfluidic device based on direct current (DC) insulator based dielectrophoresis (iDEP) for trapping individual mammalian cells in a microfluidic device. The novel device is also applicable for selective trapping of weakly metastatic mammalian breast cancer cells (MCF-7) from mixtures with mammalian Peripheral Blood Mononuclear Cells

This work demonstrated a novel microfluidic device based on direct current (DC) insulator based dielectrophoresis (iDEP) for trapping individual mammalian cells in a microfluidic device. The novel device is also applicable for selective trapping of weakly metastatic mammalian breast cancer cells (MCF-7) from mixtures with mammalian Peripheral Blood Mononuclear Cells (PBMC) and highly metastatic mammalian breast cancer cells, MDA-MB-231. The advantage of this approach is the ease of integration of iDEP structures in microfliudic channels using soft lithography, the use of DC electric fields, the addressability of the single cell traps for downstream analysis and the straightforward multiplexing for single cell trapping. These microfluidic devices are targeted for capturing of single cells based on their DEP behavior. The numerical simulations point out the trapping regions in which single cell DEP trapping occurs. This work also demonstrates the cell conductivity values of different cell types, calculated using the single-shell model. Low conductivity buffers are used for trapping experiments. These low conductivity buffers help reduce the Joule heating. Viability of the cells in the buffer system was studied in detail with a population size of approximately 100 cells for each study. The work also demonstrates the development of the parallelized single cell trap device with optimized traps. This device is also capable of being coupled detection of target protein using MALDI-MS.
ContributorsBhattacharya, Sanchari (Author) / Ros, Alexandra (Committee member) / Ros, Robert (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
189379-Thumbnail Image.png
Description
The conversion of water to hydrogen and of carbon dioxide to industrially relevant chemical precursors are examples of reactions that can be used to store renewable energy as fuels or chemical building blocks for creating sustainable chemical manufacturing cycles. Unfortunately, current industrial catalysts for these transformations are reliant on relatively

The conversion of water to hydrogen and of carbon dioxide to industrially relevant chemical precursors are examples of reactions that can be used to store renewable energy as fuels or chemical building blocks for creating sustainable chemical manufacturing cycles. Unfortunately, current industrial catalysts for these transformations are reliant on relatively expensive and/or rare materials, such as platinum in the case of hydrogen generation, or lack selectivity towards producing a desired chemical product. Such drawbacks prevent global-scale applications. Although replacing such catalysts with more efficient and earth-abundant catalysts could improve this situation, the fundamental science required for this is lacking. In the first part of this dissertation, the synthesis and characterization of a novel binuclear iron fused porphyrin designed to break traditional scaling relationships in electrocatalysis is presented. Key features of the fused porphyrin include: 1) bimetallic sites, 2) a π-extended ligand that delocalizes electrons across the multimetallic scaffold, and 3) the ability to store up to six reducing equivalents. In the second part of this thesis, the electrochemical characterization of benzimidazole-phenols as “proton wires” is described. These bioinspired assemblies model the tyrosine-histidine pair of photosystem II, which serves as a redox mediator between the light-harvesting reaction center P680 and the oxygen evolution complex that enables production of molecular oxygen from water in cyanobacteria, algae, and higher plants. Results show that as the length of the hydrogen-bond network increases across a series of benzimidazole-phenols, the midpoint potential of the phenoxyl/phenol redox couple becomes less oxidizing. However, benzimidazole-phenols containing electron-withdrawing trifluoromethyl substituents enable access to potentials that are thermodynamically sufficient for oxidative processes relevant to artificial photosynthesis, including the oxidation of water, while translocating protons over ~11 Å.
ContributorsReyes Cruz, Edgar Alejandro (Author) / Moore, Gary F (Thesis advisor) / Trovitch, Ryan J (Committee member) / Sayres, Scott G (Committee member) / Arizona State University (Publisher)
Created2023
153458-Thumbnail Image.png
Description
Biophysical techniques have been increasingly applied toward answering biological questions with more precision. Here, three different biological systems were studied with the goal of understanding their dynamic differences, either conformational dynamics within the system or oligomerization dynamics between monomers. With Cy3 on the 5' end of DNA, the

Biophysical techniques have been increasingly applied toward answering biological questions with more precision. Here, three different biological systems were studied with the goal of understanding their dynamic differences, either conformational dynamics within the system or oligomerization dynamics between monomers. With Cy3 on the 5' end of DNA, the effects of changing the terminal base pair were explored using temperature-dependent quantum yields. It was discovered, in combination with simulations, that a terminal thymine base has the weakest stacking interactions with the Cy3 dye compared to the other three bases. With ME1 heterodimers, the goal was to see if engineering a salt bridge at the dimerization interface could allow for control over dimerization in a pH-dependent manner. This was performed experimentally by measuring FRET between monomers containing either a Dap or an Asp mutation and comparing FRET efficiency at different pHs. It was demonstrated that the heterodimeric salt bridge would only form in a pH range near neutrality. Finally, with DNA processivity clamps, one aim was to compare the equilibrium dissociation constants, kinetic rate constants, and lifetimes of the closed rings for beta clamp and PCNA. This was done using a variety of biophysical techniques but with three as the main focus: fluorescence correlation spectroscopy, single-molecule experiments, and time-correlated single photon counting measurements. The stability of beta clamp was found to be three orders of magnitude higher when measuring solution stability but only one order of magnitude higher when measuring intrinsic stability, which is a result of salt bridge interactions in the interface of beta clamp. Ongoing work built upon the findings from this project by attempting to disrupt interface stability of different beta clamp mutants by adding salt or changing the pH of the solution. Lingering questions about the dynamics of different areas of the clamps has led to another project for which we have developed a control to demystify some unexpected similarities between beta clamp mutants. With that project, we show that single-labeled and double-labeled samples have similar autocorrelation decays in florescence correlation spectroscopy, allowing us to rule out the dyes themselves as causing fluctuations in the 10-100 microsecond timescale.
ContributorsBinder, Jennifer (Author) / Levitus, Marcia (Thesis advisor) / Wachter, Rebekka (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2015
158667-Thumbnail Image.png
Description
Chemical modification of (semi)conducting surfaces with soft-material coatings containing electrocatalysts provides a strategy for developing integrated constructs that capture, convert, and store solar energy as fuels. However, a lack of effective strategies for interfacing electrocatalysts with solid-state materials, and an incomplete understanding of performance limiting factors, inhibit further development. In

Chemical modification of (semi)conducting surfaces with soft-material coatings containing electrocatalysts provides a strategy for developing integrated constructs that capture, convert, and store solar energy as fuels. However, a lack of effective strategies for interfacing electrocatalysts with solid-state materials, and an incomplete understanding of performance limiting factors, inhibit further development. In this work, chemical modification of a nanostructured transparent conductive oxide, and the III-V semiconductor, gallium phosphide, is achieved by applying a thin-film polymer coating containing appropriate functional groups to direct, template, and assemble molecular cobalt catalysts for activating fuel-forming reactions. The heterogeneous-homogeneous conducting assemblies enable comparisons of the structural and electrochemical properties of these materials with their homogeneous electrocatalytic counterparts. For these hybrid constructs, rational design of the local soft-material environment yields a nearly one-volt span in the redox chemistry of the cobalt metal centers. Further, assessment of the interplay between light absorption, charge transfer, and catalytic activity in studies involving molecular-catalyst-modified semiconductors affords models to describe the rates of photoelectrosynthetic fuel production as a function of the steady-state concentration of catalysts present in their activated form. These models provide a conceptual framework for extracting kinetic and thermodynamic benchmarking parameters. Finally, investigation of molecular ‘proton wires’ inspired by the Tyrosine Z-Histidine 190 redox pair in Photosystem II, provides insight into fundamental principles governing proton-coupled electron transfer, a process essential to all fuel-forming reactions relevant to solar fuel generation.
ContributorsWadsworth, Brian Lawrence (Author) / Moore, Gary F (Thesis advisor) / Moore, Thomas A. (Committee member) / Trovitch, Ryan J (Committee member) / Arizona State University (Publisher)
Created2020