This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

187524-Thumbnail Image.png
Description
Without a doubt, protein is the most crucial biomolecule performing life and biological functions of any living cell. Profiling various protein expression in individual cells has raised a great interest for scientist and researchers over decades in attempts to reveal cell-to-cell variation, which used to be masked in many previous

Without a doubt, protein is the most crucial biomolecule performing life and biological functions of any living cell. Profiling various protein expression in individual cells has raised a great interest for scientist and researchers over decades in attempts to reveal cell-to-cell variation, which used to be masked in many previous population average measurement methods. Immunofluorescence (IF) has been a well-established single cell protein analysis technique as for its fast and high-resolution detection and localization, simple and adaptable workflows, and affordable instrumentation. However, inadequate detection sensitivity and multiplexing capability are the two limitation of this platform that remain incompletely addressed in many decades. In this work, several improvements have been proposed and demonstrated to improve existing drawbacks of conventional immunofluorescence. An azide-based linker featured in the novel fluorescent probes synthesis has enable iterative protein staining on the same tissue sample, which subsequently increase the multiplex capacity of IF. Additionally, the multiple fluorophore introduction to the proteins target via either layer by layer biotin-cleavable fluorescent streptavidin or tyramide signal amplification (TSA) have significantly increase the detection sensitivity of the platform. With these advances, IF has the potential to detect, image and quantify up to 100 protein targets in single cell in the tissue sample. In addition of desirable features of IF, these improvements have further turned the technique into a powerful proteomic study platform for not only research setting but also clinical study setting. It is anticipated this highly sensitive and multiplexed, renovated IF method will soon be translated into biomedical studies.
ContributorsPham, Thai Huy (Author) / Guo, Jia (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2023
162007-Thumbnail Image.png
Description
Osteocalcin (Oc) is the most abundant non-collagen protein found in the bone, but its precise function is still not completely understood. Three glutamic acid (Glu) residues within its sequence are sites for vitamin K-dependent post-translational modification, replacing a hydrogen with a carboxylate located at the γ-carbon position, converting these to

Osteocalcin (Oc) is the most abundant non-collagen protein found in the bone, but its precise function is still not completely understood. Three glutamic acid (Glu) residues within its sequence are sites for vitamin K-dependent post-translational modification, replacing a hydrogen with a carboxylate located at the γ-carbon position, converting these to γ-carboxyglutamic acid (Gla) residues. This modification confers increased binding of Oc to Ca2+ and hydroxyapatite matrix. Presented here, novel metal binding partners Mn2+, Fe3+, and Cr3+ of human Oc were determined, while the previously identified binders to (generally) non-human Oc, Ca2+, Mg2+, Pb2+ and Al3+ were validated as binders to human Oc by direct infusion mass spectrometry with all metals binding with higher affinity to the post-translationally modified form (Gla-Oc) compared to the unmodified form (Glu-Oc). Oc was also found to form pentamer (Gla-Oc) and pentamer and tetramer (Glu-Oc) homomeric self-assemblies in the absence of NaCl, which disassembled to monomers in the presence of near physiological Na+ concentrations. Additionally, Oc was found to form filamentous structures in vitro by negative stain TEM in the presence of increased Ca2+ titrations in a Gla- and pH-dependent manner. Finally, by combining circular dichroism spectroscopy to determine the fraction of Gla-Oc bound, and inductively-coupled plasma mass spectrometry to quantify total Al concentrations, the data were fit to a single-site binding model and the equilibrium dissociation constant for Al3+ binding to human Gla-Oc was determined (Kd = 1.0 ± 0.12 nM). Including citrate, a known competitive binder of Al3+, maintained Al in solution and enabled calculation of free Al3+ concentrations using a Matlab script to solve the complex set of linear equations. To further improve Al solubility limits, the pH of the system was lowered to 4.5, the pH during bone resorption. Complementary binding experiments with Glu-Oc were not possible due to the observed precipitation of Glu-Oc at pH 4.5, although qualitatively if Glu-Oc binds Al3+, it is with much lower affinity compared to Gla-Oc. Taken together, the results presented here further support the importance of post-translational modification, and thus adequate nutritional intake of vitamin K, on the binding and self-assembly properties of human Oc.
ContributorsThibert, Stephanie (Author) / Borges, Chad R (Thesis advisor) / LaBaer, Joshua (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2021