This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 445
Filtering by

Clear all filters

150056-Thumbnail Image.png
Description
Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological

Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological systems and exploit them for useful applications. In order to contribute to this efforts, the work presented in this dissertation focuses on the study of electrokinetic properties of liposomes and novel applications of bioaerosol analysis. Using immobilized lipid vesicles under the influence of modest (less than 100 V/cm) electric fields, a novel strategy for bionanotubule fabrication with superior throughput and simplicity was developed. Fluorescence and bright field microscopy was used to describe the formation of these bilayer-bound cylindrical structures, which have been previously identified in nature (playing crucial roles in intercellular communication) and made synthetically by direct mechanical manipulation of membranes. In the biological context, the results of this work suggest that mechanical electrostatic interaction may play a role in the shape and function of individual biological membranes and networks of membrane-bound structures. A second project involving liposomes focused on membrane potential measurements in vesicles containing trans-membrane pH gradients. These types of gradients consist of differential charge states in the lipid bilayer leaflets, which have been shown to greatly influence the efficacy of drug targeting and the treatment of diseases such as cancer. Here, these systems are qualitatively and quantitatively assessed by using voltage-sensitive membrane dyes and fluorescence spectroscopy. Bioaerosol studies involved exploring the feasibility of a fingerprinting technology based on current understanding of cellular debris in aerosols and arguments regarding sampling, sensitivity, separations and detection schemes of these debris. Aerosolized particles of cellular material and proteins emitted by humans, animals and plants can be considered information-rich packets that carry biochemical information specific to the living organisms present in the collection settings. These materials could potentially be exploited for identification purposes. Preliminary studies evaluated protein concentration trends in both indoor and outdoor locations. Results indicated that concentrations correlate to certain conditions of the collection environment (e.g. extent of human presence), supporting the idea that bioaerosol fingerprinting is possible.
ContributorsCastillo Gutiérrez, Josemar Andreina (Author) / Hayes, Mark A. (Thesis advisor) / Herckes, Pierre (Committee member) / Ghrilanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
150023-Thumbnail Image.png
Description
An emerging body of literature suggests that humans likely have multiple threat avoidance systems that enable us to detect and avoid threats in our environment, such as disease threats and physical safety threats. These systems are presumed to be domain-specific, each handling one class of potential threats, and previous research

An emerging body of literature suggests that humans likely have multiple threat avoidance systems that enable us to detect and avoid threats in our environment, such as disease threats and physical safety threats. These systems are presumed to be domain-specific, each handling one class of potential threats, and previous research generally supports this assumption. Previous research has not, however, directly tested the domain-specificity of disease avoidance and self-protection by showing that activating one threat management system does not lead to responses consistent only with a different threat management system. Here, the domain- specificity of the disease avoidance and self-protection systems is directly tested using the lexical decision task, a measure of stereotype accessibility, and the implicit association test. Results, although inconclusive, more strongly support a series of domain-specific threat management systems than a single, domain- general system
ContributorsAnderson, Uriah Steven (Author) / Kenrick, Douglas T. (Thesis advisor) / Shiota, Michelle N. (Committee member) / Neuberg, Steven L. (Committee member) / Becker, David V (Committee member) / Arizona State University (Publisher)
Created2011
149677-Thumbnail Image.png
Description
Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in

Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in biomedicine are relatively unexplored but have great potential scientific interest due to their essential nature in metabolism. Iron, a crucial element in biology, fractionates during biochemically relevant reactions. To test the extent of this fractionation in an important reaction process, equilibrium iron isotope fractionation during organic ligand exchange was determined. The results show that iron fractionates during organic ligand exchange, and that isotope enrichment increases as a function of the difference in binding constants between ligands. Additionally, to create a mass balance model for iron in a whole organism, iron isotope compositions in a whole mouse and in individual mouse organs were measured. The results indicate that fractionation occurs during transfer between individual organs, and that the whole organism was isotopically light compared with food. These two experiments advance our ability to interpret stable iron isotopes in biomedicine. Previous research demonstrated that calcium isotope variations in urine can be used as an indicator of changes in net bone mineral balance. In order to measure calcium isotopes by MC-ICP-MS, a chemical purification method was developed to quantitatively separate calcium from other elements in a biological matrix. Subsequently, this method was used to evaluate if calcium isotopes respond when organisms are subjected to conditions known to induce bone loss: 1) Rhesus monkeys were given an estrogen-suppressing drug; 2) Human patients underwent extended bed rest. In both studies, there were rapid, detectable changes in calcium isotope compositions from baseline - verifying that calcium isotopes can be used to rapidly detect changes in bone mineral balance. By characterizing iron isotope fractionation in biologically relevant processes and by demonstrating that calcium isotopes vary rapidly in response to bone loss, this thesis represents an important step in utilizing these isotope systems as a diagnostic and mechanistic tool to study the metabolism of these elements in vivo.
ContributorsMorgan, Jennifer Lynn Louden (Author) / Anbar, Ariel D. (Thesis advisor) / Wasylenki, Laura E. (Committee member) / Jones, Anne K. (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2011
149779-Thumbnail Image.png
Description
Psychology of justice research has demonstrated that individuals are concerned with both the process and the outcomes of a decision-making event. While the literature has demonstrated the importance of formal and informal aspects of procedural justice and the relevancy of moral values, the present study focuses on introducing a new

Psychology of justice research has demonstrated that individuals are concerned with both the process and the outcomes of a decision-making event. While the literature has demonstrated the importance of formal and informal aspects of procedural justice and the relevancy of moral values, the present study focuses on introducing a new form of justice: Substantive justice. Substantive justice focuses on how the legal system uses laws to constrain and direct human behavior, specifically focusing on the function and the structure of a law. The psychology of justice literature is missing the vital distinction between laws whose function is to create social opportunities versus threats and between laws structured concretely versus abstractly. In the present experiment, we found that participant evaluations of the fairness of the law, the outcome, and the decision-maker all varied depending on the function and structure of the law used as well as the outcome produced. Specifically, when considering adverse outcomes, individuals perceived laws whose function is to create liability (threats) as being fairer when structured as standards (abstract guidelines) rather than rules (concrete guidelines); however, the opposite is true when considering laws whose function is to create eligibility (opportunities). In juxtaposition, when receiving a favorable outcome, individuals perceived laws whose function is to create liability (threats) as being fairer when defined as rules (concrete guidelines) rather than standards (abstract guidelines).
ContributorsLovis-McMahon, David (Author) / Schweitzer, Nicholas J. (Thesis advisor) / Saks, Michael (Thesis advisor) / Kwan, Sau (Committee member) / Arizona State University (Publisher)
Created2011
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
149859-Thumbnail Image.png
Description
ABSTRACT Research literature relating to the use of humor as a teaching method or curricula specifically designed to include humor was reviewed to investigate the effects of humor on student learning in various environments from elementary schools to post-secondary classrooms. In this multi-method study, four instruments and a humor treatment

ABSTRACT Research literature relating to the use of humor as a teaching method or curricula specifically designed to include humor was reviewed to investigate the effects of humor on student learning in various environments from elementary schools to post-secondary classrooms. In this multi-method study, four instruments and a humor treatment were selected to test the hypothesis that students who receive humor-embedded instruction would perform better on assessments than students who did not receive humor instruction. These assessments were analyzed to show student growth in achievement and memory retention as a result of humor-embedded instruction. Gain scores between a pre- test and two post-tests determined student growth in achievement and memory retention. Gain scores were triangulated with student responses to open-ended interview questions about their experiences with humor in the classroom. The gain score data were not statistically significant between the humor and non- humor groups. For the short-term memory gain scores, the non-humor group received slightly higher gain scores. For long-term memory gain scores, the humor group received higher gain scores. However, the interview data was consistent with the findings of humor research from the last 20 years that humor improves learning directly and indirectly.
ContributorsMcCartney Matthews, Melissa Lee (Author) / Danzig, Arnold (Thesis advisor) / Satter Anderson, Kelly (Committee member) / Davey, Lynn (Committee member) / Arizona State University (Publisher)
Created2011
149964-Thumbnail Image.png
Description
ABSTRACT This multi-case study research, using qualitative and quantitative methods, examines, compares, and validates the traits, behaviors, and formulas for success utilized by four experienced, long-term, exemplary executives who lead nonprofit organizations (NPOs) that serve homeless and "at risk" populations. Service longevity is a measure of success in this study

ABSTRACT This multi-case study research, using qualitative and quantitative methods, examines, compares, and validates the traits, behaviors, and formulas for success utilized by four experienced, long-term, exemplary executives who lead nonprofit organizations (NPOs) that serve homeless and "at risk" populations. Service longevity is a measure of success in this study and each leader subject must have served a minimum of five years at their NPO to participate, though most have been leading their respective NPOs far longer. An NPO leader affects not only an organization but individual constituents and the entire community. Each leader subject is considered successful by numerous constituents and the community. Anyone is at risk for homelessness and its effects on the entire community are boundless. Traits and formulas for success are measured using three surveys: Kouzes & Posner's 360 LPI and Most Admired Characteristics surveys and Cialdini's Influence IQ Test. Additional data sources are personal interviews, organizational 990s, annual reports, and other financial and programmatic data. The instruments for data analysis are a Likert 7 Point Importance Scale used for the program and organizational evaluations by NPO professional outside raters and the Strategic Plan. Analytic tools are the Pearson Product Moment Correlations, the organization's 990s, a 3 year annual report comparison, and participant observation. This study measures the leaders against the ideal. One common theme among all the leaders is consistency, one of Cialdini's Six Principles of Influence; ii
ContributorsOstrom, Martha (Author) / Cayer, N. Joseph (Thesis advisor) / Cialdini, Robert B. (Committee member) / Schlacter, John L (Committee member) / Arizona State University (Publisher)
Created2011
149926-Thumbnail Image.png
Description
A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes

A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes of remote identification. Protein patterns were generated using high performance liquid chromatography (HPLC). Patterns created could identify high-traffic and low-traffic indoor spaces. Samples were collected from the air using air pumps to draw air through a filter paper trapping particulates, including large amounts of shed protein matter. In complimentary research aerosolized biological samples were collected from various ecosystems throughout Ecuador to explore the relationship between environmental setting and aerosolized protein concentrations. In order to further enhance protein separation and produce more detailed patterns for the identification of individual organisms of interest; a novel separation device was constructed and characterized. The separation device incorporates a longitudinal gradient as well as insulating dielectrophoretic features within a single channel. This design allows for the production of stronger local field gradients along a global gradient allowing particles to enter, initially transported through the channel by electrophoresis and electroosmosis, and to be isolated according to their characteristic physical properties, including charge, polarizability, deformability, surface charge mobility, dielectric features, and local capacitance. Thus, different types of particles are simultaneously separated at different points along the channel distance given small variations of properties. The device has shown the ability to separate analytes over a large dynamic range of size, from 20 nm to 1 μm, roughly the size of proteins to the size of cells. In the study of different sized sulfate capped polystyrene particles were shown to be selectively captured as well as concentrating particles from 103 to 106 times. Qualitative capture and manipulation of β-amyloid fibrils were also shown. The results demonstrate the selective focusing ability of the technique; and it may form the foundation for a versatile tool for separating complex mixtures. Combined this work shows promise for future identification of individual organisms from aerosolized protein as well as for applications in biomedical research.
ContributorsStaton, Sarah J. R (Author) / Hayes, Mark A. (Committee member) / Anbar, Ariel D (Committee member) / Shock, Everett (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
149827-Thumbnail Image.png
Description
The Santa Gertrudis Mining District of Sonora, Mexico contains more than a dozen purported Carlin-like, sedimentary-hosted, disseminated-gold deposits. A series of near-surface, mostly oxidized gold deposits were open-pit mined from the calcareous and clastic units of the Cretaceous Bisbee Group. Gold occurs as finely disseminated, sub-micron

The Santa Gertrudis Mining District of Sonora, Mexico contains more than a dozen purported Carlin-like, sedimentary-hosted, disseminated-gold deposits. A series of near-surface, mostly oxidized gold deposits were open-pit mined from the calcareous and clastic units of the Cretaceous Bisbee Group. Gold occurs as finely disseminated, sub-micron coatings on sulfides, associated with argillization and silicification of calcareous, carbonaceous, and siliciclastic sedimentary rocks in structural settings. Gold occurs with elevated levels of As, Hg, Sb, Pb, and Zn. Downhole drill data within distal disseminated gold zones reveal a 5:1 ratio of Ag:Au and strong correlations of Au to Pb and Zn. This study explores the timing and structural control of mineralization utilizing field mapping, geochemical studies, drilling, core logging, and structural analysis. Most field evidence indicates that mineralization is related to a single pulse of moderately differentiated, Eocene intrusives described as Mo-Cu-Au skarn with structurally controlled distal disseminated As-Ag-Au.
ContributorsGeier, John Jeffrey (Author) / Reynolds, Stephen J. (Thesis advisor) / Burt, Donald (Committee member) / Stump, Edmund (Committee member) / Arizona State University (Publisher)
Created2011
149830-Thumbnail Image.png
Description
The purpose of this study was to examine the impact of individualized afterschool tutoring, under federal Supplemental Educational Services (SES), on mathematical and general academic intrinsic motivation and mathematical achievement of at-risk students. The population of this study consisted of two third graders and five fourth graders from an elementary

The purpose of this study was to examine the impact of individualized afterschool tutoring, under federal Supplemental Educational Services (SES), on mathematical and general academic intrinsic motivation and mathematical achievement of at-risk students. The population of this study consisted of two third graders and five fourth graders from an elementary school in the Reynolds School District in Portland, Oregon. One participant was male. The other six were female. Six of the students were Hispanic, and one student was multiethnic. Students' parents enrolled their children in free afterschool tutoring with Mobile Minds Tutoring, an SES provider in the state of Oregon. The participants were given pre- and post-assessments to measure their intrinsic motivation and achievement. The third graders took the Young Children's Academic Intrinsic Motivation Inventory (Y-CAIMI) and the fourth graders took the Children's Academic Intrinsic Motivation Inventory (CAIMI). All students took the Group Mathematics Assessment and Diagnostic Evaluation (GMADE) according to their grade level. The findings from this study are consistent with the literature review, in that individualized tutoring can help increase student motivation and achievement. Six out of the seven students who participated in this study showed an increase in mathematical achievement, and four out of the seven showed an increase in intrinsic motivation.
ContributorsBallou, Cherise (Author) / Middleton, James (Thesis advisor) / Kinach, Barbara (Committee member) / Bitter, Gary (Committee member) / Arizona State University (Publisher)
Created2011