This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 434
Filtering by

Clear all filters

150022-Thumbnail Image.png
Description
Membrane proteins are very important for all living cells, being involved in respiration, photosynthesis, cellular uptake and signal transduction, amongst other vital functions. However, less than 300 unique membrane protein structures have been determined to date, often due to difficulties associated with the growth of sufficiently large and well-ordered crystals.

Membrane proteins are very important for all living cells, being involved in respiration, photosynthesis, cellular uptake and signal transduction, amongst other vital functions. However, less than 300 unique membrane protein structures have been determined to date, often due to difficulties associated with the growth of sufficiently large and well-ordered crystals. This work has been focused on showing the first proof of concept for using membrane protein nanocrystals and microcrystals for high-resolution structure determination. Upon determining that crystals of the membrane protein Photosystem I, which is the largest and most complex membrane protein crystallized to date, exist with only a hundred unit cells with sizes of less than 200 nm on an edge, work was done to develop a technique that could exploit the growth of the Photosystem I nanocrystals and microcrystals. Femtosecond X-ray protein nanocrystallography was developed for use at the first high-energy X-ray free electron laser, the LCLS at SLAC National Accelerator Laboratory, in which a liquid jet would bring fully hydrated Photosystem I nanocrystals into the interaction region of the pulsed X-ray source. Diffraction patterns were recorded from millions of individual PSI nanocrystals and data from thousands of different, randomly oriented crystallites were integrated using Monte Carlo integration of the peak intensities. The short pulses ( 70 fs) provided by the LCLS allowed the possibility to collect the diffraction data before the onset of radiation damage, exploiting the diffract-before-destroy principle. At the initial experiments at the AMO beamline using 6.9- Å wavelength, Bragg peaks were recorded to 8.5- Å resolution, and an electron-density map was determined that did not show any effects of X-ray-induced radiation damage. Recently, femtosecond X-ray protein nanocrystallography experiments were done at the CXI beamline of the LCLS using 1.3- Å wavelength, and Bragg reflections were recorded to 3- Å resolution; the data are currently being processed. Many additional techniques still need to be developed to explore the femtosecond nanocrystallography technique for experimental phasing and time-resolved X-ray crystallography experiments. The first proof-of-principle results for the femtosecond nanocrystallography technique indicate the incredible potential of the technique to offer a new route to the structure determination of membrane proteins.
ContributorsHunter, Mark (Author) / Fromme, Petra (Thesis advisor) / Wolf, George (Committee member) / Levitus, Marcia (Committee member) / Arizona State University (Publisher)
Created2011
150032-Thumbnail Image.png
Description
Molecular dynamics (MD) simulations provide a particularly useful approach to understanding conformational change in biomolecular systems. MD simulations provide an atomistic, physics-based description of the motions accessible to biomolecular systems on the pico- to micro-second timescale, yielding important insight into the free energy of the system, the dynamical stability of

Molecular dynamics (MD) simulations provide a particularly useful approach to understanding conformational change in biomolecular systems. MD simulations provide an atomistic, physics-based description of the motions accessible to biomolecular systems on the pico- to micro-second timescale, yielding important insight into the free energy of the system, the dynamical stability of contacts and the role of correlated motions in directing the motions of the system. In this thesis, I use molecular dynamics simulations to provide molecular mechanisms that rationalize structural, thermodynamic, and mutation data on the interactions between the lac repressor headpiece and its O1 operator DNA as well as the ERK2 protein kinase. I performed molecular dynamics simulations of the lac repressor headpiece - O1 operator complex at the natural angle as well as at under- and overbent angles to assess the factors that determine the natural DNA bending angle. I find both energetic and entropic factors contribute to recognition of the natural angle. At the natural angle the energy of the system is minimized by optimization of protein-DNA contacts and the entropy of the system is maximized by release of water from the protein-DNA interface and decorrelation of protein motions. To identify the mechanism by which mutations lead to auto-activation of ERK2, I performed a series of molecular dynamics simulations of ERK1/2 in various stages of activation as well as the constitutively active Q103A, I84A, L73P and R65S ERK2 mutants. My simulations indicate the importance of domain closure for auto-activation and activity regulation. My results enable me to predict two loss-of-function mutants of ERK2, G83A and Q64C, that have been confirmed in experiments by collaborators. One of the powerful capabilities of MD simulations in biochemistry is the ability to find low free energy pathways that connect and explain disparate structural data on biomolecular systems. An extention of the targeted molecular dynamics technique using constraints on internal coordinates will be presented and evaluated. The method gives good results for the alanine dipeptide, but breaks down when applied to study conformational changes in GroEL and adenylate kinase.
ContributorsBarr, Daniel Alan (Author) / van der Vaart, Arjan (Thesis advisor) / Matyushov, Dmitry (Committee member) / Wolf, George (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2011
149988-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means

Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means of diagnosing the disease before neurodegeneration is significant and sadly there is no cure that controls its progression. The protein beta-amyloid or Aâ plays an important role in the progression of the disease. It is formed from the cleavage of the Amyloid Precursor Protein by two enzymes - â and ã-secretases and is found in the plaques that are deposits found in Alzheimer brains. This work describes the generation of therapeutics based on inhibition of the cleavage by â-secretase. Using in-vitro recombinant antibody display libraries to screen for single chain variable fragment (scFv) antibodies; this work describes the isolation and characterization of scFv that target the â-secretase cleavage site on APP. This approach is especially relevant since non-specific inhibition of the enzyme may have undesirable effects since the enzyme has been shown to have other important substrates. The scFv iBSEC1 successfully recognized APP, reduced â-secretase cleavage of APP and reduced Aâ levels in a cell model of Alzheimer's Disease. This work then describes the first application of bispecific antibody therapeutics to Alzheimer's Disease. iBSEC1 scFv was combined with a proteolytic scFv that enhances the "good" pathway (á-secretase cleavage) that results in alternative cleavage of APP to generate the bispecific tandem scFv - DIA10D. DIA10D reduced APP cleavage by â-secretase and steered it towards the "good" pathway thus increasing the generation of the fragment sAPPá which is neuroprotective. Finally, treatment with iBSEC1 is evaluated for reduced oxidative stress, which is observed in cells over expressing APP when they are exposed to stress. Recombinant antibody based therapeutics like scFv have several advantages since they retain the high specificity of the antibodies but are safer since they lack the constant region and are smaller, potentially facilitating easier delivery to the brain
ContributorsBoddapati, Shanta (Author) / Sierks, Michael (Thesis advisor) / Arizona State University (Publisher)
Created2011
149647-Thumbnail Image.png
Description
This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single

This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single base resolution could be achieved with economic setups. In chapter 7, it is illustrated that some ongoing measurements are indicating the sequence readout by making linear scan on a piece of short DNA oligomer. However, to overcome the difficulties of controlling DNA especially ssDNA movement, it is much better to have the tunneling measurement incorporated onto a robust nanopore device to realize sequential reading of the DNA sequence while it is being translocated.
ContributorsHuang, Shuo (Author) / Lindsay, Stuart (Thesis advisor) / Sankey, Otto (Committee member) / Tao, Nongjian (Committee member) / Drucker, Jeff (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150402-Thumbnail Image.png
Description
This thesis describes several experiments based on carbon nanotube nanofludic devices and field-effect transistors. The first experiment detected ion and molecule translocation through one single-walled carbon nanotube (SWCNT) that spans a barrier between two fluid reservoirs. The electrical ionic current is measured. Translocation of small single stranded DNA oligomers is

This thesis describes several experiments based on carbon nanotube nanofludic devices and field-effect transistors. The first experiment detected ion and molecule translocation through one single-walled carbon nanotube (SWCNT) that spans a barrier between two fluid reservoirs. The electrical ionic current is measured. Translocation of small single stranded DNA oligomers is marked by large transient increases in current through the tube and confirmed by a PCR (polymerase chain reaction) analysis. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurement, and open new avenues for control of DNA translocation. The second experiment constructed devices in which the interior of a single-walled carbon nanotube field-effect transistor (CNT-FET) acts as a nanofluidic channel that connects two fluid reservoirs, permitting measurement of the electronic properties of the SWCNT as it is wetted by an analyte. Wetting of the inside of the SWCNT by water turns the transistor on, while wetting of the outside has little effect. This finding may provide a new method to investigate water behavior at nanoscale. This also opens a new avenue for building sensors in which the SWCNT functions as an electronic detector. This thesis also presents some experiments that related to nanofabrication, such as construction of FET with tin sulfide (SnS) quantum ribbon. This work demonstrates the application of solution processed IV-VI semiconductor nanostructures in nanoscale devices.
ContributorsCao, Zhai (Author) / Lindsay, Stuart (Thesis advisor) / Vaiana, Sara (Committee member) / Ros, Robert (Committee member) / Marzke, Robert (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2011
149862-Thumbnail Image.png
Description
Biological membranes are critical to cell sustainability by selectively permeating polar molecules into the intracellular space and providing protection to the interior organelles. Biomimetic membranes (model cell membranes) are often used to fundamentally study the lipid bilayer backbone structure of the biological membrane. Lipid bilayer membranes are often supported using

Biological membranes are critical to cell sustainability by selectively permeating polar molecules into the intracellular space and providing protection to the interior organelles. Biomimetic membranes (model cell membranes) are often used to fundamentally study the lipid bilayer backbone structure of the biological membrane. Lipid bilayer membranes are often supported using inorganic materials in an effort to improve membrane stability and for application to novel biosensing platforms. Published literature has shown that a variety of dense inorganic materials with various surface properties have been investigated for the study of biomimetic membranes. However, literature does not adequately address the effect of porous materials or supports with varying macroscopic geometries on lipid bilayer membrane behavior. The objective of this dissertation is to present a fundamental study on the synthesis of lipid bilayer membranes supported by novel inorganic supports in an effort to expand the number of available supports for biosensing technology. There are two fundamental areas covered including: (1) synthesis of lipid bilayer membranes on porous inorganic materials and (2) synthesis and characterization of cylindrically supported lipid bilayer membranes. The lipid bilayer membrane formation behavior on various porous supports was studied via direct mass adsorption using a quartz crystal microbalance. Experimental results demonstrate significantly different membrane formation behaviors on the porous inorganic supports. A lipid bilayer membrane structure was formed only on SiO2 based surfaces (dense SiO2 and silicalite, basic conditions) and gamma-alumina (acidic conditions). Vesicle monolayer adsorption was observed on gamma-alumina (basic conditions), and yttria stabilized zirconia (YSZ) of varying roughness. Parameters such as buffer pH, surface chemistry and surface roughness were found to have a significant impact on the vesicle adsorption kinetics. Experimental and modeling work was conducted to study formation and characterization of cylindrically supported lipid bilayer membranes. A novel sensing technique (long-period fiber grating refractometry) was utilized to measure the formation mechanism of lipid bilayer membranes on an optical fiber. It was found that the membrane formation kinetics on the fiber was similar to its planar SiO2 counterpart. Fluorescence measurements verified membrane transport behavior and found that characterization artifacts affected the measured transport behavior.
ContributorsEggen, Carrie (Author) / Lin, Jerry Y.S. (Thesis advisor) / Dai, Lenore (Committee member) / Rege, Kaushal (Committee member) / Thornton, Trevor (Committee member) / Vogt, Bryan (Committee member) / Arizona State University (Publisher)
Created2011
149903-Thumbnail Image.png
Description
Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they

Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they have demonstrated therapeutic utility and clinical efficacy for neurological and psychiatric disorders. When applied for therapeutic applications, these techniques suffer from limitations that hinder the progression of its intended use to treat compromised brain function. DBS requires an invasive surgical procedure that surfaces complications from infection, longevity of electrical components, and immune responses to foreign materials. Both TMS and tDCS circumvent the problems seen with DBS as they are noninvasive procedures, but they fail to produce the spatial resolution required to target specific brain structures. Realizing these restrictions, we sought out to use ultrasound as a neurostimulation modality. Ultrasound is capable of achieving greater resolution than TMS and tDCS, as we have demonstrated a ~2mm lateral resolution, which can be delivered noninvasively. These characteristics place ultrasound superior to current neurostimulation methods. For these reasons, this dissertation provides a developed protocol to use transcranial pulsed ultrasound (TPU) as a neurostimulation technique. These investigations implement electrophysiological, optophysiological, immunohistological, and behavioral methods to elucidate the effects of ultrasound on the central nervous system and raise questions about the functional consequences. Intriguingly, we showed that TPU was also capable of stimulating intact sub-cortical circuits in the anesthetized mouse. These data reveal that TPU can evoke synchronous oscillations in the hippocampus in addition to increasing expression of brain-derived neurotrophic factor (BDNF). Considering these observations, and the ability to noninvasively stimulate neuronal activity on a mesoscale resolution, reveals a potential avenue to be effective in clinical settings where current brain stimulation techniques have shown to be beneficial. Thus, the results explained by this dissertation help to pronounce the significance for these protocols to gain translational recognition.
ContributorsTufail, Yusuf Zahid (Author) / Tyler, William J (Thesis advisor) / Duch, Carsten (Committee member) / Muthuswamy, Jitendran (Committee member) / Santello, Marco (Committee member) / Tillery, Stephen H (Committee member) / Arizona State University (Publisher)
Created2011
149795-Thumbnail Image.png
Description
ATP synthase is a large multimeric protein complex responsible for generating the energy molecule adenosine triphosphate (ATP) in most organisms. The catalysis involves the rotation of a ring of c-subunits, which is driven by the transmembrane electrochemical gradient. This dissertation reports how the eukaryotic c-subunit from spinach chloroplast ATP

ATP synthase is a large multimeric protein complex responsible for generating the energy molecule adenosine triphosphate (ATP) in most organisms. The catalysis involves the rotation of a ring of c-subunits, which is driven by the transmembrane electrochemical gradient. This dissertation reports how the eukaryotic c-subunit from spinach chloroplast ATP synthase has successfully been expressed in Escherichia coli and purified in mg quantities by incorporating a unique combination of methods. Expression was accomplished using a codon optimized gene for the c-subunit, and it was expressed as an attachment to the larger, more soluble, native maltose binding protein (MBP-c1). The fusion protein MBP-c1 was purified on an affinity column, and the c1 subunit was subsequently severed by protease cleavage in the presence of detergent. Final purification of the monomeric c1 subunit was accomplished using reversed phase column chromatography with ethanol as an eluent. Circular dichroism spectroscopy data showed clear evidence that the purified c-subunit is folded with the native alpha-helical secondary structure. Recent experiments appear to indicate that this monomeric recombinant c-subunit forms an oligomeric ring that is similar to its native tetradecameric form when reconstituted in liposomes. The F-type ATP synthase c-subunit stoichiometry is currently known to vary from 8 to 15 subunits among different organisms. This has a direct influence on the metabolic requirements of the corresponding organism because each c-subunit binds and transports one H+ across the membrane as the ring makes a complete rotation. The c-ring rotation drives rotation of the gamma-subunit, which in turn drives the synthesis of 3 ATP for every complete rotation. The availability of a recombinantly produced c-ring will lead to new experiments which can be designed to investigate the possible factors that determine the variable c-ring stoichiometry and structure.
ContributorsLawrence, Robert Michael (Author) / Fromme, Petra (Thesis advisor) / Chen, Julian J.L. (Committee member) / Woodbury, Neal W. (Committee member) / Arizona State University (Publisher)
Created2011
149824-Thumbnail Image.png
Description
Nicotine is thought to underlie the reinforcing and dependence-producing effects of tobacco-containing products. Nicotine supports self-administration in rodents, although measures of its reinforcing effects are often confounded by procedures that are used to facilitate acquisition, such as food restriction, prior reinforcement training, or response-contingent co-delivery of a naturally reinforcing light.

Nicotine is thought to underlie the reinforcing and dependence-producing effects of tobacco-containing products. Nicotine supports self-administration in rodents, although measures of its reinforcing effects are often confounded by procedures that are used to facilitate acquisition, such as food restriction, prior reinforcement training, or response-contingent co-delivery of a naturally reinforcing light. This study examined whether rats acquire nicotine self-administration in the absence of these facilitators. A new mathematical modeling procedure was used to define the criterion for acquisition and to determine dose-dependent differences in rate and asymptote levels of intake. Rats were trained across 20 daily 2-h sessions occurring 6 days/week in chambers equipped with active and inactive levers. Each active lever press resulted in nicotine reinforcement (0, 0.015, 0.03, 0.06 mg/kg, IV) and retraction of both levers for a 20-s time out, whereas inactive lever presses had no consequences. Acquisition was defined by the best fit of a logistic function (i.e., S-shaped) versus a constant function (i.e., flat line) for reinforcers obtained across sessions using a corrected Akaike information criterion (AICc) as a model selection tool. The results showed an inverted-U shaped function for dose in relation to the percentage of animals that acquired nicotine self-administration, with 46% acquiring at 0.015 mg/kg, 73% at 0.03 mg/kg, and 58% at 0.06 mg/kg. All saline rats failed to acquire as expected. For rats that acquired nicotine self-administration, multiple model comparisons demonstrated that the asymptote (highest number of reinforcers/session) and half learning point (h; session during which half the assymptote had been achieved) were justified as free parameters of the reinforcers/session function, indicating that these parameters vary with nicotine dose. Asymptote exhibited an inverted U-shaped function across doses and half learning point exhibited a negative relationship to dose (i.e., the higher the dose the fewer sessions to reach h). These findings suggest that some rats acquire nicotine self-administration without using procedures that confound measures of acquisition rate. Furthermore, the modeling approach provides a new way of defining acquisition of drug self-administration that takes advantage of using all data generated from individual subjects and is less arbitrary than some criteria that are currently used.
ContributorsCole, Natalie (Author) / Neisewander, Janet L (Thesis advisor) / Sanabria, Federico (Thesis advisor) / Bimonte-Nelson, Heather A. (Committee member) / Olive, Michael F (Committee member) / Arizona State University (Publisher)
Created2011
149826-Thumbnail Image.png
Description
ABSTRACT &eacutetudes; written for violin ensemble, which include violin duets, trios, and quartets, are less numerous than solo &eacutetudes.; These works rarely go by the title "&eacutetude;," and have not been the focus of much scholarly research. Ensemble &eacutetudes; have much to offer students, teachers and

ABSTRACT &eacutetudes; written for violin ensemble, which include violin duets, trios, and quartets, are less numerous than solo &eacutetudes.; These works rarely go by the title "&eacutetude;," and have not been the focus of much scholarly research. Ensemble &eacutetudes; have much to offer students, teachers and composers, however, because they add an extra dimension to the learning, teaching, and composing processes. This document establishes the value of ensemble &eacutetudes; in pedagogy and explores applications of the repertoire currently available. Rather than focus on violin duets, the most common form of ensemble &eacutetude;, it mainly considers works for three and four violins without accompaniment. Concentrating on the pedagogical possibilities of studying &eacutetudes; in a group, this document introduces creative ways that works for violin ensemble can be used as both &eacutetudes; and performance pieces. The first two chapters explore the history and philosophy of the violin &eacutetude; and multiple-violin works, the practice of arranging of solo &eacutetudes; for multiple instruments, and the benefits of group learning and cooperative learning that distinguish ensemble &eacutetude; study from solo &eacutetude; study. The third chapter is an annotated survey of works for three and four violins without accompaniment, and serves as a pedagogical guide to some of the available repertoire. Representing a wide variety of styles, techniques and levels, it illuminates an historical association between violin ensemble works and pedagogy. The fourth chapter presents an original composition by the author, titled Variations on a Scottish Folk Song: &eacutetude; for Four Violins, with an explanation of the process and techniques used to create this ensemble &eacutetude.; This work is an example of the musical and technical integration essential to &eacutetude; study, and demonstrates various compositional traits that promote cooperative learning. Ensemble &eacutetudes; are valuable pedagogical tools that deserve wider exposure. It is my hope that the information and ideas about ensemble &eacutetudes; in this paper and the individual descriptions of the works presented will increase interest in and application of violin trios and quartets at the university level.
ContributorsLundell, Eva Rachel (Contributor) / Swartz, Jonathan (Thesis advisor) / Rockmaker, Jody (Committee member) / Buck, Nancy (Committee member) / Koonce, Frank (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2011