This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

187808-Thumbnail Image.png
Description
This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth

This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth theoretical study. Next, various computational approaches to estimating causal effects with machine learning methods are compared with these theoretical desiderata in mind. Several improvements to current methods for causal machine learning are identified and compelling angles for further study are pinpointed. Finally, a common method used for “explaining” predictions of machine learning algorithms, SHAP, is evaluated critically through a statistical lens.
ContributorsHerren, Andrew (Author) / Hahn, P Richard (Thesis advisor) / Kao, Ming-Hung (Committee member) / Lopes, Hedibert (Committee member) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Arizona State University (Publisher)
Created2023
190865-Thumbnail Image.png
Description
This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous outcome setting are presented. The Accelerated Bayesian Causal Forrest (XBCF)

This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous outcome setting are presented. The Accelerated Bayesian Causal Forrest (XBCF) model handles variance via a group-specific parameter, and the Heteroskedastic version of XBCF (H-XBCF) uses a separate tree ensemble to learn covariate-dependent variance. This work also contributes to the field of survival analysis by proposing a new framework for estimating survival probabilities via density regression. Within this framework, the Heteroskedastic Accelerated Bayesian Additive Regression Trees (H-XBART) model, which is also developed as part of this work, is utilized in treatment effect estimation for right-censored survival outcomes. All models have been implemented as part of the XBART R package, and their performance is evaluated via extensive simulation studies with appropriate sets of comparators. The contributed methods achieve similar levels of performance, while being orders of magnitude (sometimes as much as 100x) faster than comparator state-of-the-art methods, thus offering an exciting opportunity for treatment effect estimation in the large data setting.
ContributorsKrantsevich, Nikolay (Author) / Hahn, P Richard (Thesis advisor) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Lan, Shiwei (Committee member) / He, Jingyu (Committee member) / Arizona State University (Publisher)
Created2023